The aim was to evaluate the performance of point-of-care (POC) tests in detecting glucose and ketone bodies in postmortem (PM) samples and to assess the usefulness of POC tests in sample screening for more precise analyses. Glucose and ketone body, β-hydroxybutyrate (BHB), were measured from vitreous humor (VH) in 52 autopsy cases with a POC blood glucose monitoring device (BGMD). In addition glucose and ketone bodies, acetone (Ac) and acetoacetate (AcAc), were measured from urine samples in another set of 59 cases with semi-quantitative stick tests. The results were compared to the concentration in VH measured with validated methods (values ≥ 7mmol/l indicate possible hyperglycemia and total ketone body levels ≥ 3mmol/l ketoacidosis). The sensitivity for glucose with the BGMD was 1.0 and specificity 0.94 when the threshold value for the meter to predict elevated glucose was set to ≥ 10mmol/l. The correlation between the BGMD and the validated method was strong (R(2)=0.89). For detecting ketoacidosis, the BGMD had a sensitivity of 1.0 and specificity of 0.73, when the threshold value was set to 2.5mmol/l. The urine stick test presented a sensitivity of 0.89 and specificity of 0.90 for detecting elevated VH glucose concentration. The sensitivity and specificity for the stick test to detect cases with possible ketoacidosis were 0.84 and 0.68, respectively. According to the results, BGMD can be reliably applied for sample screening, although more samples need to be analyzed for delineating the correct threshold values. In the case of glucose, the urine stick tests could be indicative in detecting cases with VH glucose ≥ 10mmol/l. For predicting possible ketoacidosis with elevated VH total ketone bodies, the stick test is not reliable as the test presented both false-positive and -negative results.
Lactate is produced in carbohydrate metabolism under anaerobic conditions. Lactic acidosis occurs when the production of lactate exceeds its removal. In post-mortem (PM) context, the lactic acidosis is difficult to interpret due to unknown pathophysiological factors prior to death and PM changes that may affect the lactate levels. We evaluated 1865 medico-legal autopsy cases where the quantitation of glucose, lactate, and ketone bodies was performed as a part of the cause of death (CoD) investigation. Lactate was shown to ascend in a logarithmic manner as the PM interval increased until a plateau was achieved approximately after 8-10 days PM, and the elevation was caused mainly by PM changes. The lactate level was higher than the mean in cases where the CoD was diabetes mellitus type 2 (DM2) or metformin poisoning. Although there was a correlation between metformin and lactate levels, our findings suggest the DM2 and its complications were the cause for elevated lactate levels rather than metformin, since the lactate levels were similar in DM2-associated deaths where no metformin was detected. Elevated lactate levels in PM samples rather referred to metabolic disturbances often caused by DM2. An assay to detect D-lactate in PM samples was described.
AimTo determine whether antemortem blood levels of glycated hemoglobin (HbA1c) and glucose predict completed suicide and, by extension, whether markers of glucose metabolism might be associated with a prosuicidal trait or state.MethodFrom consecutively performed autopsies, samples of blood and vitreous humor from 17 suicide victims and 27 non-suicide controls were compared with regard to levels of glucose, lactate, and HbA1c.ResultsMean HbA1c was higher and mean estimated blood glucose was lower among suicide victims, although tests revealed no significant differences (P = 0.171 and P = 0.395, respectively). HbA1c levels exceeding 48.0 mmol/mol, which were indicative of persistent hyperglycemia, were twice as common in suicide victims (59% vs 30%; P = 0.068).ConclusionThe finding of this pilot study suggest that deranged glucose metabolism may reflect biological events antecedent to, or concomitant with, completed suicide, with the following clinical implications: recurring hyperglycemia due to defective glucose transport, which may give rise to depression and suicidal ideation, and elevated HbA1c levels, which may represent an assayable correlate to neurobiological conditions predisposing to suicide.
Diabetes and alcohol abuse may cause severe metabolic disturbances that can be fatal. These may be difficult to diagnose in autopsies based solely on macroscopical and histological findings. In such cases, metabolic markers, such as postmortem glucose and ketone levels, can provide supporting information. Glucose or combined glucose and lactate, the Traub value, is often used to indicate hyperglycemia. The use of the Traub value, however, has been questioned by some, because the lactate levels are known to elevate in postmortem samples also due to other reasons than glycolysis of glucose molecules. Ketoacidosis can be detected by analyzing ketone body levels, especially beta-hydroxybutyric acid (BHB). Acetone is also elevated in severe cases of ketoacidosis. Here, we have evaluated the value of these biomarkers for postmortem determination of the metabolic disturbances. Retrospective data of 980 medico-legal autopsies performed in Finland, where glucose, lactate and ketone bodies were analyzed, was collected. Our findings show that the Traub value indicates hyperglycemia, even when glucose levels are low. For diagnosis, evaluation of complementing markers, e.g. ketone bodies and glycated hemoglobin is needed. Our results show that BHB can be used for screening and diagnosis of ketoacidosis. Acetone alone is not sufficient, since it is elevated only in the most severe cases. We also found that alcohol abuse rarely causes severe ketoacidosis. However, sporadic cases do exist where ketone body levels are extremely high. Despite this, alcoholic ketoacidosis is very rarely diagnosed as the cause of death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.