In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(D,L)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47 wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50 = 168 nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.
New salicylic (2-hydroxybenzoic) acid derivatives 1–6 were prepared by conventional heating or microwave irradiation of a mixture consisting of methyl salicylate and the corresponding amino alcohol (2,2'-dihydroxydiethylamine, 2,2',2?-trihydroxytriethylamine or N-phenyl-2,2'-dihydroxydiethylamine) and metallic sodium as catalyst. For compounds 1, 3, and 5 X-ray structure analysis was performed, as well as molecular mechanics calculations (MMC), to define their conformation in terms of their energy minima. Comparison of crystal and MMC structures for these three compounds (1, 3, and 5) revealed that the intramolecular hydrogen bonds play an important role, stabilizing conformation of the most part of the molecule. The antioxidant activity and cytotoxicity of the synthesized derivatives were evaluated in a series of in vitro tests. The newly synthesized compounds exhibited strong activity against hydroxyl radical, as well as promising lipid peroxidation inhibition. The study showed that the electronic effects of the groups at the N atom are responsible for neutralization of the OH radical, i.e., antioxidant activity. Compounds 1–3 exhibited sub-micromolar cytotoxicity against HeLa S3, whereas compounds 1, 3 and 5 efficiently inhibited the growth of PC3 cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.