Mucoromycota representatives are known to harbour two types of endohyphal bacteria (EHB) – Burkholderia related endobacteria (BRE) and Mycoplasma related endobacteria (MRE). While both BRE and MRE occur in fungi representing all subphyla of Mucoromycota, their distribution is not well studied. Therefore, it is difficult to resolve the evolutionary history of these associations in favour of one of the two alternative hypotheses explaining their origin: “early invasion” and “late invasion”. Our main goal was to fill this knowledge gap by surveying Mucoromycota fungi for presence of EHB. We screened 196 fungal strains from 16 genera using PCR-based approach to detect bacterial 16S rDNA gene, complemented with FISH imaging to confirm presence of bacteria within the hyphae. We detected Burkholderiaceae in ca. 20% of fungal strains. Some of these bacteria clustered phylogenetically with previously described BRE clades whereas others grouped with free-living Paraburkholderia. Importantly, the latter were detected in Umbelopsidales, which previously were not known to harbour endobacteria. Our results suggest that this group of EHB is recruited from the environment, supporting the late invasion scenario. This pattern complements the early invasion scenario apparent in the BRE clade of EHB. IMPORTANCE Bacteria living within fungal hyphae present an example of one of the most intimate relationships between fungi and bacteria. Even though there are several well-described examples of such partnerships, their prevalence within fungal kingdom remains unknown. Our study focused on early divergent terrestrial fungi in the phylum Mucoromycota. We found that ca. 20% of the strains tested, harboured bacteria from the family Burkholderiaceae. Not only did we confirm the presence of bacteria from previously described endosymbiont clades, we also identified new group of endohyphal Burkholderiaceae representing the genus Paraburkholderia. We established that more than half of the screened Umbelopsis strains were positive for bacteria from this new group. We also determined that, while previously described BRE codiverged with their fungal hosts, Paraburkholderia symbionts did not.
MicroRNAs (miRNAs), key regulators of gene expression at the post-transcriptional level, are grossly misregulated in some human cancers, including non-small-cell lung carcinoma (NSCLC). The aberrant expression of specific miRNAs results in the abnormal regulation of key components of signalling pathways in tumour cells. MiRNA levels and the activity of the gene targets, including oncogenes and tumour suppressors, produce feedback that changes miRNA expression levels and indicates the cell’s genetic activity. In this study, we measured the expression of five circulating miRNAs (miR-195, miR-504, miR-122, miR-10b and miR-21) and evaluated their association with EPIDERMAL GROWTH FACTOR RECEPTOR ( EGFR ) mutation status in 66 NSCLC patients. Moreover, we examined the discriminative power of circulating miRNAs for EGFR mutant‐positive and -negative NSCLC patients using two different data normalisation approaches. We extracted total RNA from the plasma of 66 non-squamous NSCLC patients (31 of whom had tumours with EGFR mutations) and measured circulating miRNA levels using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The miRNA expression levels were normalised using two endogenous controls: miR-191 and miR-16. We found significant associations between the expression of circulating miR-504 and EGFR -activating mutations in NSCLC patients regardless of the normalisation approach used ( p = 0.0072 and 0.0236 for miR-16 and miR-191 normalisation, respectively). The greatest discriminative power of circulating miR-504 was observed in patients with EGFR exon 19 deletions versus wild-type EGFR normalised to miR-191 (area under the curve (AUC) = 0.81, p < 0.0001). Interestingly, circulating miR-504 levels were significantly reduced in the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog ( KRAS )-mutated subgroup compared to EGFR -mutated patients ( p < 0.0030) and those with EGFR/KRAS wild-type tumours ( p < 0.0359). Our study demonstrated the feasibility and potential diagnostic value of plasma miR-504 expression analysis to distinguish between EGFR -mutated and wild-type NSCLC patients. However, quality control and normalisation strategies are very important and have a major impact on the outcomes of circulating miRNA analyses.
Current diagnostic methods allow a rapid and reliable detection of active human cytomegalovirus (hCMV) infection by identifying the presence of pp65 CMV antigen or CMV DNA in peripheral blood and affected organs. The goal of this study was to evaluate the effectiveness of CMV detection in blood and organ-specific biological material, such as bronchoalveolar lavage fluid (BALF), by comparing two standard diagnostic methods, immunofluorescence (IF) and the real-time polymerase chain reaction (PCR). We evaluated 25 patients with concomitant respiratory disease who were referred to our hospital for diagnosis due to suspected acute CMV infection. The presence of hCMV was concomitantly evaluated by IF and PCR in 16 peripheral blood samples. In two patients, we observed positive results for both IF and PCR, and in two other patients the results were discordant. Of 11 patients, CMV DNA was detected in six BALF samples, and in one blood plasma sample. Real-time PCR detected CMV DNA in 54.6 % of BALF samples and 12.0 % of blood samples, while indirect IF testing confirmed antigenemia in 12.5 % of blood samples. The results from our study suggest that the IF method is as effective as PCR for detecting an ongoing CMV infection in blood samples. However, real-time PCR was much more effective at detecting CMV DNA in BALF compared to blood samples. Our results suggest that the biological material being tested during CMV diagnosis should be derived directly from the virally infected organ(s).
The SERPINA1 gene encoding the alpha-1 antitrypsin (A1AT) protein is highly polymorphic. It is known that, apart from the most prevalent PI*S and PI*Z A1AT deficiency variants, other so-called rare variants also predispose individuals to severe chronic respiratory disorders such as emphysema and chronic obstructive pulmonary disease. Our aim was to assess the frequencies of common and rare SERPINA1 mutations in a group of 1033 Polish patients referred for A1AT deficiency diagnostics due to chronic respiratory disorders in the period of January 2014-September 2015. All blood samples were analyzed according to the routine diagnostic protocol, including A1AT serum concentration assessment by nephelometry and immune isoelectric focusing, followed by PCR genotyping and direct sequencing when necessary. A total of 890 out of the 1033 samples (86 %) carried the normal PI*MM genotype, whereas, in 143 samples (14 %), at least one A1AT deficiency variant was detected. In 132 subjects, PI*S (2.1 %) and PI*Z (10.8 %) common deficiency alleles were identified, yielding frequencies of 0.011 and 0.062, respectively. Rare SERPINA1 variants were detected in nine patients: PI*F (c.739C>T) (n = 5) and PI*I (c.187C>T) (n = 4). Samples from the patients with an A1AT serum concentration below 120 mg/dl and presenting a PI*MM-like phenotypic pattern were retrospectively analyzed by direct sequencing for rare SERPINA1 mutations, revealing a PI*M2Obernburg (c.514G>T) mutation in one patient and a non-pathogenic mutation (c.922G>T) in another. We conclude that the deficiency PI*Z A1AT allele is considerably more common in patients with chronic respiratory disorders than in the general Polish population. The prevalence of the PI*F allele seems higher than in other European studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.