The crystal structure of 9H-carbazole, C12H9N, (I), has been redetermined at low temperature for use as a reference structure in a comparative study with the structures of 1-nitro-9H-carbazole, C12H8N2O2, (II), and 9-nitrocarbazole, C12H8N2O2, (III). The molecule of (I) has crystallographically imposed mirror symmetry (Z' = 0.5). All three solid-state structures are slightly nonplanar, the dihedral angles between the planes of the arene and pyrrole rings ranging from 0.40 (7)° in (III) to 1.82 (18)° in (II). Nevertheless, a density functional theory (DFT) study predicts completely planar conformations for the isolated molecules. To estimate the influence of nitro-group substitution on aromaticity, the HOMA (harmonic oscillator model of aromaticity) descriptor of π-electron delocalization has been calculated in each case. The HOMA indices for the isolated and solid-state molecules are relatively consistent and decrease in value for aromatic rings that are substituted with a π-electron-withdrawing nitro group. Substitution of the arene ring influences the π-electron delocalization in the ring only weakly, showing strong resistance to a perturbation of its geometry, contrary to what is observed for nitro substitution of the five-membered heterocyclic pyrrole ring. In (II), the molecules are arranged in near-planar dimers connected to each other by strong N-H···O hydrogen bonds that stack parallel to the crystallographic b axis. A similar stacking arrangement is observed in (III), although here the stacked structure is formed by stand-alone molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.