Yellow lupine (Lupinus luteus L., Taper c.), a member of the legume family (Fabaceae L.), has an enormous practical importance. Its excessive flower and pod abscission represents an economic drawback, as proper flower and seed formation and development is crucial for the plant's productivity. Generative organ detachment takes place at the basis of the pedicels, within a specialized group of cells collectively known as the abscission zone (AZ). During plant growth these cells become competent to respond to specific signals that trigger separation and lead to the abolition of cell wall adhesion. Little is known about the molecular network controlling the yellow lupine organ abscission. The aim of our study was to establish the divergences and similarities in transcriptional networks in the pods, flowers and flower pedicels abscised or maintained on the plant, and to identify genes playing key roles in generative organ abscission in yellow lupine. Based on de novo transcriptome assembly, we identified 166,473 unigenes representing 219,514 assembled unique transcripts from flowers, flower pedicels and pods undergoing abscission and from control organs. Comparison of the cDNA libraries from dropped and control organs helped in identifying 1,343, 2,933 and 1,491 differentially expressed genes (DEGs) in the flowers, flower pedicels and pods, respectively. In DEG analyses, we focused on genes involved in phytohormonal regulation, cell wall functioning and metabolic pathways. Our results indicate that auxin, ethylene and gibberellins are some of the main factors engaged in generative organ abscission. Identified 28 DEGs common for all library comparisons are involved in cell wall functioning, protein metabolism, water homeostasis and stress response. Interestingly, among the common DEGs we also found an miR169 precursor, which is the first evidence of micro RNA engaged in abscission. A KEGG pathway enrichment analysis revealed that the identified DEGs were predominantly involved in carbohydrate and amino acid metabolism, but some other pathways were also targeted. This study represents the first comprehensive transcriptome-based characterization of organ abscission in L. luteus and provides a valuable data source not only for understanding the abscission signaling pathway in yellow lupine, but also for further research aimed at improving crop yields.
A standardized tree-ring width chronology of the Scots pine (Pinus sylvestris L.) along with different types of documentary evidence (e.g. annals, chronicles, diaries, private correspondence, records of public administration, early newspapers) have been used to reconstruct air temperature in Poland. The ground surface temperature (GST) history has been reconstructed based on the continuous temperature logs from 13 wells, using a new method developed recently by Harris and Chapman (1998; Journal of Geophysical Research 103: 7371-7383) which is compared with the functional space inversion (FSI) method applied to all available Polish temperature-depth profiles analysed before.Response function calculations conducted for trees growing in Poland (except in mountainous regions) reveal a statistically significant correlation between the annual ring widths of the Scots pine and the monthly mean air temperatures, particularly from February and March, but also from January and April. Therefore, it was only possible to reconstruct the mean January-April air temperature.The following periods featured a warm late winter/early spring: 1530-90, 1656-70 (the warmest period), 1820-50, 1910-40, and after 1985. On the other hand, a cold January-April occurred in the following periods: 1600-50, 1760-75, 1800-15, 1880-1900, and 1950-80. Reconstructions of thermal conditions using documentary evidence were carried out for winter (December-February) and summer (June-August) from 1501 to 1840 and, therefore, their results cannot be directly compared with reconstructions based on tree-ring widths. Winter temperatures in this period were colder than air temperature in the 20th century. On the other hand, 'historical' summers were generally warmer than those occurring in the 20th century. Such situations dominated in the 16th and 17th centuries, as well as at the turn of the 18th and 19th centuries. Throughout almost the entire period from 1501 to 1840, the thermal continentality of the climate in Poland was greater than in the 20th century.GST reconstructions show that its average pre-instrumental level (1500-1778) is about 0.9-1.5°C lower than the mean air temperature for the period 1951-81. Lower amplitude of GST warming (0.9 ± 0.1°C) results from the individual and simultaneous inversions of well temperature data using the FSI method. A very good correspondence of the results has been found between series of annual mean GSTs from the FSI method and mean seasonal air temperatures reconstructed using documentary evidence.
In flowering plants, proper development of male generative organs is required for successful sexual reproduction. Stamen primordia arise in the third whorl of floral organs and subsequently differentiate into filaments and anthers. The early phase of stamen development, in which meiosis occurs, is followed by a late developmental phase, which consists of filament elongation coordinated with pollen maturation, anther dehiscence and finally viable pollen grain release. Stamen development and function are modulated by phytohormones, with a key role of gibberellins (GAs) and jasmonates (JAs). Long-term, extensive investigations, mainly involving GA/JA-deficient and GA/JA-response mutants, have led to a better understanding of the hormone-dependent molecular mechanisms of stamen development. In several species, the principal functions of GAs are to stimulate filament elongation through increased cell elongation and to promote anther locule opening. In the GA-dependent regulation of early stamen development, both the tapetum and developing pollen were identified as major targets. JAs mainly control the late stages of stamen development, such as filament elongation, viable pollen formation and anther dehiscence. A hierarchical relationship between GAs and JAs was recognized mainly in the control of late stamen development. By repressing DELLA proteins, GAs modulate the transcriptional activity of JA biosynthesis genes to promote JA production. A high level of JAs induces a complex of transcription factors crucial for normal stamen development.
The influence of general hemispheric circulation on European temperature and precipitation was investigated. Data from the period 1901-1976 were utilized: the monthly frequencies of Occurrence of W, E, C circulation pattern types according to the Wangenheim-Girs classification, monthly values of pressure differences between 35" an 65"N (zonal index), mean temperatures of January and July at 30 stations in both the warm season (May-October) and the cold season (November-April) and semi-annual precipitation totals for 21 stations in Europe. The correlation coefficients between the circulation characteristics and climate elements indicated above in Europe were calculated.Maps of these correlation coefficients have been produced, with the areas of their statistical significance. The results show that variability of temperature, and also partly of precipitation in Europe are significantly correlated with changes of circulation pattern types. January temperature also depends on the zonal index.If it is assumed that in future, until the end of this century, an increase of W type frequency and a decrease of C circulation pattern types will take place-it may be expected that temperature and precipitation will undergo appropriate changes in certain parts of Europe. Northern and some central areas of Europe are likely to change from continental to Oceanic climate as. regards temperature; precipitation is likely to increase in northern Europe.
Sturge–Weber syndrome (SWS) is a neurocutaneous disorder characterised by vascular malformations affecting skin, eyes and leptomeninges of the brain, which can lead to glaucoma, seizures and intellectual disability. The discovery of a disease-causing somatic missense mutation in the GNAQ gene, encoding an alpha chain of heterotrimeric G-proteins, has initiated efforts to understand how G-proteins contribute to SWS pathogenesis. The mutation is predominantly detected in endothelial cells and is currently believed to affect downstream MAPK-signalling. In this study of six Norwegian patients with classical SWS, we aimed to identify somatic mutations through deep sequencing of DNA from skin biopsies. Surprisingly, one patient was negative for the GNAQ mutation, but instead harboured a somatic mutation in GNB2 (NM_005273.3:c.232A > G, p.Lys78Glu) which encodes a beta chain of the same G-protein complex. The positions of the mutant amino acids in the G-protein are essential for complex reassembly. Therefore, failure of reassembly and continuous signalling is a likely consequence of both mutations. Ectopic expression of mutant proteins in endothelial cells revealed that expression of either mutant reduced cellular proliferation, yet regulated MAPK-signalling differently, suggesting that dysregulated MAPK-signalling cannot fully explain the SWS phenotype. Instead, both mutants reduced synthesis of YAP, a transcriptional co-activator of the Hippo signalling pathway, suggesting a key role for this pathway in the vascular pathogenesis of SWS. The discovery of the GNB2 mutation sheds novel light on the pathogenesis of SWS and suggests that future research on targets of treatment should be directed towards the YAP, rather than the MAPK, signalling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.