Laser-based technologies are extensively used for polymer surface patterning and/or texturing. Different micro- and nanostructures can be obtained thanks to a wide range of laser types and beam parameters. Cell behavior on various types of materials is an extensively investigated phenomenon in biomedical applications. Polymer topography such as height, diameter, and spacing of the patterning will cause different cell responses, which can also vary depending on the utilized cell types. Structurization can highly improve the biological performance of the material without any need for chemical modification. The aim of the study was to evaluate the effect of CO2 laser irradiation of poly(L-lactide) (PLLA) thin films on the surface microhardness, roughness, wettability, and cytocompatibility. The conducted testing showed that CO2 laser texturing of PLLA provides the ability to adjust the structural and physical properties of the PLLA surface to the requirements of the cells despite significant changes in the mechanical properties of the laser-treated surface polymer.
This study presents an analysis of the impact of the oxide layers, prepared utilizing fiber laser radiation (1062 nm) in ambient air with different process parameters, on the corrosion resistance of EN 5754 aluminum alloy. Due to both high corrosion resistance and high fatigue strength, a 5754 alloy is used, among others, in the marine, aerospace, automotive, and chemical industries. Nevertheless, it corrodes in aggressive environments (with high chloride ions concentration). The controlled delivery of laser radiation energy in the oxygen environment allows the formation of the oxide layer on the surface of the material. We have determined that it significantly affects the resistance of these materials to corrosion. As a result of laser irradiation, changes in the chemical structure of the surface layer (chemical composition as well as surface development) can be observed. It may exert both a positive and a negative consequence on the corrosion resistance. The electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy EIS) have been carried out in an aggressive environment (3% NaCl). Moreover, microscopic examination, chemical tests, and roughness were also performed. The study revealed that appropriate control of the laser process can significantly increase the original corrosion resistance of the 5754 aluminum alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.