Despite the dynamic development of additive manufacturing technologies, including selective laser sintering (SLS), there is still limited information on the impact of key factors in printing strategy, on the properties of three-dimensional (3D) printed parts. Such factors, such as the orientation of printed layers toward the powder bed or elements target dimensions, seem to be particularly important, from both a mechanical and a structural point of view. Besides, the scientific articles mainly focus on the analysis of one type of loading condition in the samples, that is, the uniaxial tensile test, which were printed on industrial SLS printers. This is a considerable limitation because very often not only tensile forces but also compressive forces act on the structural elements. Therefore, this study aimed at evaluating the influence of desktop SLS printed parts' orientation and diameter on their structural and mechanical parameters. The mechanical properties of samples printed from PA12 powder on the desktop SLS 3D printer were tested in uniaxial tensile and compression tests, as well as structural properties were investigated. For the purposes of this article, 5 angular orientations of the samples in relation to the powder bed and three diameters of cylindrical samples were analyzed. The research has shown that in the case of samples subjected to tensile load, the printing strategy is important, and the best mechanical parameters are obtained for parts printed at an angle of 0°, that is, in the powder bed's plane. The highest values of mechanical parameters were obtained for a part oriented at an angle of 0°. In the case of the uniaxial compression test and structural parameters, the parts orientation turned out to be an insignificant factor affecting the tested parameters. However, the diameter of printed elements was proven to have a significant influence; the best geometric and dimensional representation was observed for parts biggest in size.
Laser-based technologies are extensively used for polymer surface patterning and/or texturing. Different micro- and nanostructures can be obtained thanks to a wide range of laser types and beam parameters. Cell behavior on various types of materials is an extensively investigated phenomenon in biomedical applications. Polymer topography such as height, diameter, and spacing of the patterning will cause different cell responses, which can also vary depending on the utilized cell types. Structurization can highly improve the biological performance of the material without any need for chemical modification. The aim of the study was to evaluate the effect of CO2 laser irradiation of poly(L-lactide) (PLLA) thin films on the surface microhardness, roughness, wettability, and cytocompatibility. The conducted testing showed that CO2 laser texturing of PLLA provides the ability to adjust the structural and physical properties of the PLLA surface to the requirements of the cells despite significant changes in the mechanical properties of the laser-treated surface polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.