Despite the dynamic development of additive manufacturing technologies, including selective laser sintering (SLS), there is still limited information on the impact of key factors in printing strategy, on the properties of three-dimensional (3D) printed parts. Such factors, such as the orientation of printed layers toward the powder bed or elements target dimensions, seem to be particularly important, from both a mechanical and a structural point of view. Besides, the scientific articles mainly focus on the analysis of one type of loading condition in the samples, that is, the uniaxial tensile test, which were printed on industrial SLS printers. This is a considerable limitation because very often not only tensile forces but also compressive forces act on the structural elements. Therefore, this study aimed at evaluating the influence of desktop SLS printed parts' orientation and diameter on their structural and mechanical parameters. The mechanical properties of samples printed from PA12 powder on the desktop SLS 3D printer were tested in uniaxial tensile and compression tests, as well as structural properties were investigated. For the purposes of this article, 5 angular orientations of the samples in relation to the powder bed and three diameters of cylindrical samples were analyzed. The research has shown that in the case of samples subjected to tensile load, the printing strategy is important, and the best mechanical parameters are obtained for parts printed at an angle of 0°, that is, in the powder bed's plane. The highest values of mechanical parameters were obtained for a part oriented at an angle of 0°. In the case of the uniaxial compression test and structural parameters, the parts orientation turned out to be an insignificant factor affecting the tested parameters. However, the diameter of printed elements was proven to have a significant influence; the best geometric and dimensional representation was observed for parts biggest in size.
In this research, we synthesize and characterize poly(glycerol sebacate) pre-polymer (pPGS) (1H NMR, FTiR, GPC, and TGA). Nano-hydroxyapatite (HAp) is synthesized using the wet precipitation method. Next, the materials are used to prepare a PGS-based composite with a 25 wt.% addition of HAp. Microporous composites are formed by means of thermally induced phase separation (TIPS) followed by thermal cross-linking (TCL) and salt leaching (SL). The manufactured microporous materials (PGS and PGS/HAp) are then subjected to imaging by means of SEM and µCT for the porous structure characterization. DSC, TGA, and water contact angle measurements are used for further evaluation of the materials. To assess the cytocompatibility and biological potential of PGS-based composites, preosteoblasts and differentiated hFOB 1.19 osteoblasts are employed as in vitro models. Apart from the cytocompatibility, the scaffolds supported cell adhesion and were readily populated by the hFOB1.19 preosteoblasts. HAp-facilitated scaffolds displayed osteoconductive properties, supporting the terminal differentiation of osteoblasts as indicated by the production of alkaline phosphatase, osteocalcin and osteopontin. Notably, the PGS/HAp scaffolds induced the production of significant amounts of osteoclastogenic cytokines: IL-1β, IL-6 and TNF-α, which induced scaffold remodeling and promoted the reconstruction of bone tissue. Initial biocompatibility tests showed no signs of adverse effects of PGS-based scaffolds toward adult BALB/c mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.