Dynamic networks are used in a wide range of fields, including social network analysis, recommender systems and epidemiology. Representing complex networks as structures changing over time allow network models to leverage not only structural but also temporal patterns. However, as dynamic network literature stems from diverse fields and makes use of inconsistent terminology, it is challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a lot of attention in recent years for their ability to perform well on a range of network science tasks, such as link prediction and node classification. Despite the popularity of graph neural networks and the proven benefits of dynamic network models, there has been little focus on graph neural networks for dynamic networks. To address the challenges resulting from the fact that this research crosses diverse fields as well as to survey dynamic graph neural networks, this work is split into two main parts. First, to address the ambiguity of the dynamic network terminology we establish a foundation of dynamic networks with consistent, detailed terminology and notation. Second, we present a comprehensive survey of dynamic graph neural network models using the proposed terminology.INDEX TERMS Dynamic network models, graph neural networks, link prediction, temporal networks.
The rapid development and expansion of the Internet and the social-based services comprised by the common Web 2.0 idea provokes the creation of the new area of research interests, i.e. social networks on the Internet called also virtual or online communities. Social networks can be either maintained and presented by social networking sites like MySpace, LinkedIn or indirectly extracted from the data about user interaction, activities or achievements such as emails, chats, blogs, homepages connected by hyperlinks, commented photos in multimedia sharing system, etc. A social network is the set of human beings or rather their digital representations that refer to the registered users who are linked by relationships extracted from the data about their activities, common communication or direct links gathered in the internetbased systems. Both digital representations named in the paper internet identities as well as their relationships can be characterized in many different ways. Such diversity yields for building a comprehensive and coherent view onto the concept of internetbased social networks. This survey provides in-depth analysis and classification of social networks existing on the Internet together with studies on selected examples of different virtual communities.
Modern societies are exposed to a myriad of risks ranging from disease to natural hazards and technological disruptions. Exploring how the awareness of risk spreads and how it triggers a diffusion of coping strategies is prominent in the research agenda of various domains. It requires a deep understanding of how individuals perceive risks and communicate about the effectiveness of protective measures, highlighting learning and social interaction as the core mechanisms driving such processes. Methodological approaches that range from purely physics-based diffusion models to data-driven environmental methods rely on agentbased modeling to accommodate context-dependent learning and social interactions in a diffusion process. Mixing agent-based modeling with data-driven machine learning has become popularity. However, little attention has been paid to the role of intelligent learning in risk appraisal and protective decisions, whether used in an individual or a collective process. The differences between collective learning and individual learning have not been sufficiently explored in diffusion modeling in general and in agent-based models of socioenvironmental systems in particular. To address this research gap, we explored the implications of intelligent learning on the gradient from individual to collective learning, using an agent-based model enhanced by machine learning. Our simulation experiments showed that individual intelligent judgement about risks and the selection of coping strategies by groups with majority votes were outperformed by leader-based groups and even individuals deciding alone. Social interactions appeared essential for both individual learning and group learning. The choice of how to represent social learning in an agent-based model could be driven by existing cultural and social norms prevalent in a modeled society.
All online sharing systems gather data that reflects users' collective behaviour and their shared activities. This data can be used to extract different kinds of relationships, which can be grouped into layers, and which are basic components of the multidimensional social network proposed in the paper. The layers are created on the basis of two types of relations between humans, i.e. direct and object-based ones which respectively correspond to either social or semantic links between individuals. For better understanding of the complexity of the social network structure, layers and their profiles were identified and studied on two, spanned in time, snapshots of the Flickr population. Additionally, for each layer, a separate strength measure was proposed. The experiments on the Flickr photo sharing system revealed that the relationships between users result either from semantic links between objects they operate on or from social connections of these users. Moreover, the density of the social network increases in time. The second part of the study is devoted to building a social recommender system that supports the creation of new relations between users in a multimedia sharing system. Its main goal is to generate personalized suggestions that are continuously adapted to users' needs depending on the personal weights assigned to each layer in the multidimensional social network. The conducted experiments confirmed the usefulness of the proposed model.Comment: social recommender system;Multidimensional social network (MSN);Web 2.0;multi-layered social network;multimedia sharing system (MSS);recommender system;social network analysi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.