(A.J.).Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass of minor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stressinducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses of h1.3 null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription. We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants.Linker (H1) histones are conserved and ubiquitous structural components of eukaryotic chromatin required for the stabilization of higher order chromatin structure and are generally thought to restrict DNA accessibility. Interestingly, despite their architectural role, H1 histones were shown to be highly mobile and continuously exchanging among chromatin-binding sites (Raghuram et al., 2009). They are also the most variable of the histones, with numerous nonallelic variants coexisting in the same cell. In vertebrates, several evolutionarily conserved subfamilies of H1 can be distinguished (Talbert et al., 2012) and appear to play both redundant and specific roles during development and cellular differentiation (McBryant et al., 2010). There is accumulating evidence that, in animals, regulation of the proportions of H1 variants with different dynamic behavior in chromatin is involved in controlling the accessibility of DNA to trans-acting factors (Jullien et al., 2010;Shahhoseini et al., 2010;Zhang et al., 2012a;Pérez-Montero et al., 2013;Christophorou et al., 2014).Epigenetic mechanisms, including DNA and histone modifications and active nucleosome remodeling, are major players in translating signals about environmental perturbations into adaptive responses at the transc...
Plants have developed different strategies to adapt to various stress conditions including drought. In the present study the drought-induced changes in the actin filament (AFs) network was studied, for the first time, in two barley cultivars of contrasting drought tolerance level. Detached leaves of drought-tolerant (cv. 'CAM/B1/ CI') and drought-susceptible (cv. 'Maresi') cultivars were dried under controlled conditions. The water relations as well as the transcript accumulation of actin (ACT11), actin depolymerization factor (ADF1) and dehydrine (HVA1) encoding genes were studied using qRT-PCR. Quantitative (the relative fluorescence index; RFI) and qualitative drought-induced changes in AF cytoskeleton were observed following staining with phalloidin. It was noticed that tolerant cultivar was characterized with relative water content decreased during drought treatment which was accompanied by increase in HVA1 expression together with decrease in ACT11 and ADF1 transcripts accumulation induced by drought. In drought-susceptible cultivar the expressions of both ACT11 and ADF1 were slightly lower than those in the control. Drought triggered an extensive AF cytoskeleton reorganization within different types of leaf-blade cells. Remarkable changes in AF configuration and its increased amount (fluorescence intensity) were observed mainly in drought-tolerant cultivar. In addition, drought-induced changes in AFs were closely associated with chloroplasts. Those AFs probably controlled drought-induced intracellular chloroplast positioning in mesophyll. Based on the results obtained in the present study, the possible role of AF rearrangements in drought response is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.