Jerusalem artichoke mashed tubers were fermented using single yeasts and a bacterium as well as mixed culture of microorganisms. Kluyveromyces fragilis, a yeast with an active inulinase, was used together with either a commercial distillery yeast, Saccharomyces cerevisiae, or the bacterium Zymomonas mobilis. After batch fermentation the best ethanol concentration of 0.48 g g(-1) for the mixed population and 0.46 g g(-1) for the single population can be obtained. The theoretical yield of the mixed cultures was 2-12% higher than for the single microorganism.
The aim of this study was to investigate the efficient utilization of sugar beet pulp, as well as raw, concentrated raw and thick sugar beet juice, for bioethanol production. Different fermentation conditions were examined. The influence of raw material pre-treatment (pasteurization or sterilization), type of batch culture process (stationary or shaken) as well as the type of Saccharomyces cerevisiae yeast preparation on the yields of the process were studied. Moreover, the fermentation process effectiveness was examined in connection with the quality of the obtained distillates. Sterilization, stationary batch culture and Safdistil C-70 yeast preparation were identified as the most profitable factors for sugar beet pulp fermentation, providing a high fermentation efficiency and ethanol yield (87.7% of theoretical ethanol yield). Concentrated raw beet juice resulted in a value of 94.2% of theoretical yield, and thick juice a 92.6% yield. The results suggest that bioethanol production from sugar beet pulp and sugar beet juice has promise as an alternative fuel. The raw spirits obtained from the sugar beet juice were characterized as having the lowest quantity of volatile by-products.
The composition of spirits distilled from fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tubers was compared by means of gas chromatography. The microorganisms used in the fermentation processes were the bacterium Zymomonas mobilis, strains 3881 and 3883, the distillery yeast Saccharomyces cerevisiae, strains Bc16a and D2 and the Kluyveromyces fragilis yeast with an active inulinase. The fermentation of mashed tubers was conducted using a single culture of the distillery yeast Saccharomyces cerevisiae and the bacterium Zymomonas mobilis (after acid or enzymatic hydrolysis) as well as Kluyveromyces fragilis (sterilized mashed tubers). The tubers were simultaneously fermented by mixed cultures of the bacterium or the distillery yeast with K. fragilis. The highest ethanol yield was achieved when Z. mobilis 3881 with a yeast demonstrating inulinase activity was applied. The yield reached 94 % of the theoretical value. It was found that the distillates resulting from the fermentation of mixed cultures were characterized by a relatively lower amount of by‐products compared to the distillates resulting from the single species process. Ester production of 0.30–2.93 g/L, responsible for the aromatic quality of the spirits, was noticed when K. fragilis was applied for ethanol fermentation both in a single culture process and also in the mixed fermentation with the bacterium. Yeast applied in this study caused the formation of higher alcohols to concentrations of 7.04 g/L much greater than those obtained with the bacterium. The concentrations of compounds other than ethanol obtained from Jerusalem artichoke mashed tubers, which were fermented by Z. mobilis, were lower than those achieved for yeasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.