Given the environmental footprints of the conventional agriculture, it is imperative to test and validate alternative production systems, with lower environmental impacts to mitigate and adapt our production systems. In this study, we identified six production systems, four in Italy and two in Denmark, to assess the environmental footprint for comparison among the production systems and additionally with conventional production systems. SimaPro 8.4 software was used to carry out the life cycle impact assessment. Among other indicators, three significantly important indicators, namely global warming potential, acidification, and eutrophication, were used as the proxy for life cycle impact assessment. In Italy, the production systems compared were silvopastoral, organic, traditional, and conventional olive production systems, whereas in Denmark, combined food and energy production system was compared with the conventional wheat production system. Among the six production systems, conventional wheat production system in Denmark accounted for highest global warming potential, acidification, and eutrophication. In Italy, global warming potential was highest in traditional agroforestry and lowest in the silvopastoral system whereas acidification and eutrophication were lowest in the traditional production system with high acidification effects from the silvopastoral system. In Italy, machinery use contributed the highest greenhouse gas emissions in silvopastoral and organic production systems, while the large contribution to greenhouse gas emissions from fertilizer was recorded in the traditional and conventional production systems. In Denmark, the combined food and energy system had lower environmental impacts compared to the conventional wheat production system according to the three indicators. For both systems in Denmark, the main contribution to greenhouse gas emission was due to fertilizer and manure application. The study showed that integrated food and non-food systems are more environmentally friendly and less polluting compared to the conventional wheat production system in Denmark with use of chemical fertilizers and irrigation. The study can contribute to informed decision making by the land managers and policy makers for promotion of environmentally friendly food and non-food production practices, to meet the European Union targets of providing biomass-based materials and energy to contribute to the bio-based economy in Europe and beyond.
⎯Over the recent years, drought has been occurring with an ever increasing frequency in Poland. The longer the rainless period lasts, the more acute its impacts are. Agricultural drought manifests itself as a prolonged period of water shortage for agricultural crops during their growth season resulting in yield reduction. Extent of drought was evaluated by the climatic water balance (CWB). Climatic water balance is an indicator that determines the state of humidification of the environment using data measured at meteorological stations. It is defined as the difference between atmospheric precipitation and evapotranspiration (in millimeters) calculated by an empirical formula taking into account: temperature, sunshine, and length of the day. CWB was calculated using meteorological data from 294 weather stations and weather posts across Poland. Spatial data from point measurements were interpolated using the Geographic Information System (GIS) software. Yield forecasts were made for major crops in Poland using agro-meteorological yield models and weather indices (WI). Yield figures were based on data from the Central Statistical Office of Poland (GUS). The autumn of 2011 was the driest in several dozen years in many localities of southeastern Poland. For instance, at the weather station in Puławy, the lowest level of precipitation had been recorded since 1871. Weather conditions prevailing in the growing season of 2012 were very beneficial for winter cereals and winter rapeseed. As for sugar beet, the weather also favored high yields over most of the growing season, except the final stage of growth. Notwithstanding the extreme drought in the autumn of 2011, the good weather conditions in the remaining part of the growth period caused the yields of winter crops and sugar beet to be high. The very scant autumn precipitation, even though it had negative impact on the germination of cereals, seedling emergence, and seedling growth, did not cause any major losses to yields. Water supplies from September precipitation combined with frequent morning mists, fogs, and dew mitigated the impact of prolonged drought and were sufficient to sustain the yields at an acceptable level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.