Polarized growth in eukaryotes requires polar multiprotein complexes. Here, we establish that selection and maintenance of cell polarity for growth also requires a dedicated multiprotein assembly in the filamentous bacterium, Streptomyces coelicolor. We present evidence for a tip organizing center and confirm two of its main components: Scy (Streptomyces cytoskeletal element), a unique bacterial coiled-coil protein with an unusual repeat periodicity, and the known polarity determinant DivIVA. We also establish a link between the tip organizing center and the filamentforming protein FilP. Interestingly, both deletion and overproduction of Scy generated multiple polarity centers, suggesting a mechanism wherein Scy can both promote and limit the number of emerging polarity centers via the organization of the Scy-DivIVA assemblies. We propose that Scy is a molecular "assembler," which, by sequestering DivIVA, promotes the establishment of new polarity centers for de novo tip formation during branching, as well as supporting polarized growth at existing hyphal tips.bacterial polarized growth | polar multiprotein assembly | cell division | modified hendecad coiled coil H ow organisms, cells, or tissues establish polarity is one of the fundamental questions in developmental biology. In eukaryotes, from unicellular organisms to multicellular plants and animals, some of the core mechanisms for generating polarity are conserved (1). Sites for polarization must be selected using positional markers, followed by the recruitment of a complex assembly, which, in turn, orients cytoskeletal filaments that deliver vesicles to the particular sites. A specific example of polarity is polarized growth, during which cells select a single polarization site and generate elongated, cylindrical shapes, such as neuronal dendrites in animals, root hairs and pollen tubes in plants, hyphal growth of filamentous fungi, elongation of Schizosaccharomyces pombe, or the short period of polarized growth during budding in Saccharomyces cerevisiae. However, the presumed earliest examples of polarized growth can be found in bacteria. These include the actinomycete Streptomyces coelicolor, which is used as a model organism for studying morphological differentiation and filamentous growth.The complex life cycle of S. coelicolor begins with an ovoid spore that contains a single chromosome. During germination, long, multigenomic filaments (germ tubes) are formed, which branch regularly to generate a network of hyphal filaments. Branching is a necessity for exponential growth because the rate of tip elongation cannot exceed a certain maximum; hence, there is an exponential increase in the number of new tips. New tips develop on the lateral wall well behind the existing tip, a phenomenon also observed and described as apical dominance in eukaryotic filamentous fungi. When grown on semisolid agar medium, these hyphal filaments first grow across and into the solid medium, generating the vegetative mycelium, followed by the formation of an aerial mycelium by h...
SummaryStreptomyces coelicolor has nine SigB-like RNA polymerase sigma factors, several of them implicated in morphological differentiation and/or responses to different stresses. One of the nine, SigN, is the focus of this article. A constructed sigN null mutant was delayed in development and exhibited a bald phenotype when grown on minimal medium containing glucose as carbon source. One of two distinct sigN promoters, sigNP1, was active only during growth on solid medium, when its activation coincided with aerial hyphae formation. Transcription from sigNP1 was readily detected in several whi mutants (interrupted in morphogenesis of aerial mycelium into spores), but was absent from all bld mutants tested, suggesting that sigNP1 activity was restricted to the aerial hyphae. It also depended on sigN, thus sigN was autoregulated. Mutational and transcription studies revealed no functional significance to the location of sigN next to sigF, encoding another SigB-like sigma factor. We identified another potential SigN target, nepA, encoding a putative small secreted protein. Transcription of nepA originated from a single, aerial hyphae-specific and sigN-dependent promoter. While in vitro run-off transcription using purified SigN on the Bacillus subtilis ctc promoter confirmed that SigN is an RNA polymerase sigma factor, SigN failed to initiate transcription from sigNP1 and from the nepA promoter in vitro. Additional in vivo data indicated that further nepA upstream sequences, which are likely to bind a potential activator, are required for successful transcription. Using a nepA-egfp transcriptional fusion we located nepA transcription to a novel compartment, the 'subapical stem' of the aerial hyphae. We suggest that this newly recognized compartment defines an interface between the aerial and vegetative parts of the Streptomyces colony and might also be involved in communication between these two compartments.
The sarcoplasmic reticulum of skeletal muscle contains anionic phospholipids as well as the zwitterionic phosphatidylcholine and phosphatidylethanolamine. Here we study the effects of anionic phospholipids on the activity of the Ca2+-ATPase purified from the membrane. Reconstitution of the Ca2+-ATPase into dioleoylphosphatidylserine [di(C18:1)PS] or dioleoylphosphatidic acid [di(C18:1)PA] leads to a decrease in ATPase activity. Measurements of the quenching of the tryptophan fluorescence of the ATPase by brominated phospholipids give a relative binding constant for the anionic lipids compared with dioleoylphosphatidylcholine close to 1 and suggest that phosphatidic acid only binds to the ATPase at the bulk lipid sites around the ATPase. Addition of di(C18:1)PS or di(C18:1)PA to the ATPase in the short-chain dimyristoleoylphosphatidylcholine [di(C14:1)PC] reverse the effects of the short-chain lipid on ATPase activity and on Ca2+ binding, as revealed by the response of tryptophan fluorescence intensity to Ca2+ binding. It is concluded that the lipid headgroup and lipid fatty acyl chains have separate effects on the function of the ATPase. The anionic phospholipids have no significant effect on Ca2+ binding to the ATPase; the level of Ca2+ binding to the ATPase, the affinity of binding and the rate of dissociation of Ca2+ are unchanged by reconstitution into di(C18:1)PA. The major effect of the anionic lipids is a reduction in the maximal level of binding of MgATP. This is attributed to the formation of oligomers of the Ca2+-ATPase, in which only one molecule of the ATPase can bind MgATP dimers in di(C18:1)PS and trimers or tetramers in di(C18:1)PA. The rates of phosphorylation and dephosphorylation for the proportion of the ATPase still able to bind ATP are unaffected by reconstitution. Larger changes were observed in the level of phosphorylation of the ATPase by Pi, which became very low in the anionic phospholipids. The fluorescence response to Mg2+ for the ATPase labelled with 4-(bromomethyl)-6,7-dimethoxycoumarin was also changed in di(C18:1)PS and di(C18:1)PA, so that effects of Mg2+ became comparable with those seen on phosphorylation for the unreconstituted ATPase. The anionic phospholipids could induce a conformational change in the ATPase on binding Mg2+ equivalent to that normally induced by phosphorylation or by binding inhibitors such as thapsigargin.
ATPase activities for the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum reconstituted into dioleoylphosphatidylethanolamine [di(C18:1)PE] are, at temperatures higher than 20 degrees C, lower than in dioleoylphosphatidylcholine [di(C18:1)PC], whereas in egg yolk phosphatidylethanolamine the activities are the same as in di(C18:1)PC up to 25 degrees C, suggesting that low ATPase activities occur when the phosphatidylethanol-amine species is in the hexagonal H11 phase. ATPase activities measured in mixtures of di(C18:1)PC and di(C18:1)PE do not change with changing di(C18:1)PE content up to 80%. It is concluded that curvature frustration in bilayers containing di(C18:1)PE has no effect on ATPase activity. The rates of phosphorylation and of Ca2+ transport are identical for the native ATPase and for the ATPase in di(C18:1)PE. Dephosphorylation of the phosphorylated ATPase in di(C18:1)PE at 25 degrees C is, however, slower than for the native ATPase, explaining the lower steady-state rate of ATP hydrolysis; in egg yolk phosphatidylethanolamine at 25 degrees C the rate of dephosphorylation is equal to that for the unreconstituted ATPase. Phosphorylation of the ATPase by P1 in the absence of Ca2+ is unaffected by reconstitution in di(C18:1)RE. The stoichiometry of Ca2+ binding to the ATPase is also unaltered. Studies of the effect of di(C18:1)PE on the fluorescence intensity of the ATPase labelled with 7-chloro-4-nitro-2,1,3-benzoxadiazole are consistent with an increase in the E1/E2 equilibrium constant, where E1 is the conformation of the ATPase with two high-affinity binding sites for Ca2+ exposed to the cytoplasm, and E2 is a conformation unable to bind cytoplasmic Ca2+. A slight increase in affinity for Ca2+ can be attributed to the observed increase in the E1/E2 equilibrium constant.
Effects of lipid structure on the function of the Ca(2+)-ATPase of skeletal muscle of sarcoplasmic reticulum are reviewed. Binding of phospholipids to the ATPase shows little specificity. Phosphatidylcholines with short (C14) or long (C24) fatty acyl chains have marked effects on the activity of the ATPase, including a change in the stoichiometry of Ca binding. Low ATPase activity in gel phase lipid follows from low rate of phosphorylation. Phosphatidylinositol 4-phosphate increases ATPase activity by increasing the rate of dephosphorylation of the phosphorylated ATPase. Stimulation is not seen with other anionic phospholipids; phosphatidic acid decreases ATPase activity in a Mg(2-)-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.