We describe a high-precision method, now in use in our laboratory, for measuring the CO2 mixing ratio of ancient air trapped in polar ice cores. Occluded air in ice samples weighing ∼8–15 g is liberated by crushing with steel pins at −35°C and trapped at −263°C in a cryogenic cold trap. CO2 in the extracted air is analyzed using gas chromatography. Replicate measurements for several samples of high-quality ice from the Siple Dome and Taylor Dome Antarctic ice cores have pooled standard deviations of <0.9 ppm. This high-precision technique is directly applicable to high-temporal-resolution studies for detection of small CO2 variations, for example CO2 variations of a few parts per million on millennial to decadal scales.
The decomposition of marine plankton in two-chamber, seawater-filled microbial fuel cells (MFCs) has been investigated and related to resulting chemical changes, electrode potentials, current efficiencies, and microbial diversity. Six experiments were run at various discharge potentials, and a seventh served as an open-circuit control. The plankton consisted of a mixture of freshly captured phytoplankton and zooplankton (0.21 to 1 mm) added at an initial batch concentration of 27.5 mmol liter ؊1 particulate organic carbon (OC). After 56.7 days, between 19.6 and 22.2% of the initial OC remained, sulfate reduction coupled to OC oxidation accounted for the majority of the OC that was degraded, and current efficiencies (of the active MFCs) were between 11.3 and 15.5%. In the open-circuit control cell, anaerobic plankton decomposition (as quantified by the decrease in total OC) could be modeled by three terms: two first-order reaction rate expressions (0.79 day ؊1 and 0.037 day ؊1 , at 15°C) and one constant, no-reaction term (representing 10.6% of the initial OC). However, in each active MFC, decomposition rates increased during the third week, lagging just behind periods of peak electricity generation. We interpret these decomposition rate changes to have been due primarily to the metabolic activity of sulfur-reducing microorganisms at the anode, a finding consistent with the electrochemical oxidization of sulfide to elemental sulfur and the elimination of inhibitory effects of dissolved sulfide. Representative phylotypes, found to be associated with anodes, were allied with Delta-, Epsilon-, and Gammaproteobacteria as well as the Flavobacterium-Cytophaga-Bacteroides and Fusobacteria. Based upon these results, we posit that higher current efficiencies can be achieved by optimizing plankton-fed MFCs for direct electron transfer from organic matter to electrodes, including microbial precolonization of high-surface-area electrodes and pulsed flowthrough additions of biomass.
This work presents the optimisation, validation and field deployment of a voltammetric in situ profiling (VIP) system for the simultaneous determinations of dynamic Cd(II), Cu(II) and Pb(II) in estuarine and coastal waters. Systematic studies in NaNO 3 (as a supporting electrolyte) and seawater, indicated that variations in ionic strength, pH and dissolved oxygen did not affect the response of the instrument, whereas an Arrhenius type temperature response was observed. The VIP instrument allows the determination of 2-3 samples h 21 , and has a detection limit (defined as 3s) in seawater for Cd(II): 23 pM, Cu(II): 1.13 nM, and Pb(II): 23 pM. The VIP system accurately measured the total dissolved concentrations of Cd(II), Cu(II) and Pb(II) in two certified reference materials; SLRS-3, a river water, and SLEW-2, an estuarine water. Field evaluation of the instrumentation and analytical methods was achieved through a series of surveys in the Plym Estuary (Devon, UK), from which environmental data are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.