Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry–based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c–dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2–dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity.
Polo-like kinase 1 (Plk1) is an essential protein kinase that promotes faithful mitotic progression in eukaryotes. The subcellular localization and substrate interactions of Plk1 are tightly controlled and require its binding to phosphorylated sequences. Here, to identify phosphorylation-dependent interactions within the Plk1 network in human mitotic cells we performed quantitative proteomics on HeLa cells cultured with kinase inhibitors or expressing a Plk1 mutant that was deficient in phosphorylation-dependent substrate binding. We found that many interactions were abolished upon kinase inhibition; however, a subset were protected from phosphatase opposition or were unopposed, resulting in persistent interaction of the substrate with Plk1. This subset includes phosphoprotein phosphatase 6 (PP6), whose activity towards Aurora kinase A (Aurora A) was inhibited by Plk1. Our data suggest that this Plk1-PP6 interaction creates a feedback loop that coordinates and reinforces the activities of Plk1 and Aurora A during mitotic entry and is terminated by the degradation of Plk1 during mitotic exit. Thus, we have identified a mechanism for the previously puzzling observation of Plk1-dependent regulation of Aurora A.
Leucine-rich repeat kinase 2 (LRRK2) and tau have been identified as risk factors of Parkinson's disease (PD). As LRRK2 is a kinase and tau is hyperphosphorylated in some LRRK2 mutation carriers of PD patients, the obvious hypothesis is that tau could be a substrate of LRRK2. Previous reports that LRRK2 phosphorylates free tau or tubulin-associated tau provide direct support for this proposition. By comparing LRRK2 with cdk5, we show that wild-type LRRK2 and the G2019S mutant phosphorylate free recombinant full-length tau protein with specific activity 480- and 250-fold lower than cdk5, respectively. More strikingly tau binds to wt LRRK2 or the G2019S mutant 140- or 200-fold more strongly than cdk5. The extremely low activity of LRRK2 but strong binding affinity with tau suggests that LRRK2 may facilitate tau phosphorylation as a scaffold protein rather than as a major tau kinase. This hypothesis is further supported by the observation that (i) cdk5 or tau coimmunoprecipitates with endogenous LRRK2 in SH-SY5Y cells, in mouse brain tissue, and in human PBMCs; (ii) knocking down endogenous LRRK2 by its siRNA in SH-SY5Y cells reduces tau phosphorylation at Ser396 and Ser404; (iii) inhibiting LRRK2 kinase activity by its inhibitors has no effect on tau phosphorylation at these two sites; and (iv) overexpressing wt LRRK2, the G2019S mutant, or the D1994A kinase-dead mutant in SH-SY5Y cells has no effect on tau phosphorylation. Our results suggest that LRRK2 facilitates tau phosphorylation indirectly by recruiting tau or cdk5 rather than by directly phosphorylating tau.
Background and Objectives The Colton blood group antigens are carried by the AQP1 water channel. AQP1−/− individuals, also known as Colton-null since they express no Colton antigens, do not suffer any apparent clinical consequence but may develop a clinically significant alloantibody (anti-CO3) induced by transfusion or pregnancy. Identification and transfusion support of Colton-null patients are highly challenging, not only due to the extreme rarity of this phenotype, the lack of appropriate reagents in most laboratories, as well as the possibility of confusing its with the recently described CO:-1,-2,3,-4 phenotype where AQP1 is present. This study investigated a new Colton-null case and evaluated three commercially available anti-AQP1s to identify Colton-null red blood cell samples. Methods The Colton-null phenotype was investigated by standard serological techniques, AQP1 sequencing, immunoblot and flow cytometry analyses. Results We identified and characterized the Colton-null phenotype in a Gypsy woman who developed an anti-CO3 during her first pregnancy. After developing a simple and robust method to sequence AQP1, we showed that she was apparently homozygous for a new AQP1 null allele, AQP1 601delG, whose product is not expressed in her red blood cells. We also established the Colton specificity of three commercially available anti-AQP1s in immunoblot and/or flow cytometry analyses. Conclusion This Gypsy woman represents the sixth Colton-null case characterized at the serological, genetic and biochemical levels. The validation here of new reagents and methods should facilitate the identification of Colton-null individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.