On 14th November 2016, the northeastern South Island of New Zealand was struck by a major Mw 7.8 earthquake. Field observations, in conjunction with InSAR, GPS, and seismology reveal this to be one of the most complex earthquakes ever recorded. The rupture propagated northward for more than 170 km along both mapped and unmapped faults, before continuing offshore at its northeastern extent. Geodetic and field observations reveal surface ruptures along at least 12 major faults, including possible slip along the southern Hikurangi subduction interface, extensive uplift along much of the coastline and widespread anelastic deformation including the ~8 m uplift of a fault-bounded block. This complex earthquake defies many conventional assumptions about the degree to which earthquake ruptures are controlled by fault segmentation, and should motivate re-thinking of these issues in seismic hazard models.One Sentence Summary: Major earthquake rips through evolving fault zone, defying conventional wisdom regarding the degree of fault segmentation during earthquake ruptures.
A team of earthquake geologists, seismologists, and engineering seismologists has collectively produced an update of the national probabilistic seismic hazard (PSH) model for New Zealand (National Seismic Hazard Model, or NSHM). The new NSHM supersedes the earlier NSHM published in 2002 and used as the hazard basis for the New Zealand Loadings Standard and numerous other end-user applications. The new NSHM incorporates a fault source model that has been updated with over 200 new onshore and offshore fault sources and utilizes new New Zealand-based and international scaling relationships for the parameterization of the faults. The distributed seismicity model has also been updated to include post-1997 seismicity data, a new seismicity regionalization, and improved methodology for calculation of the seismicity parameters. Probabilistic seismic hazard maps produced from the new NSHM show a similar pattern of hazard to the earlier model at the national scale, but there are some significant reductions and increases in hazard at the regional scale. The national-scale differences between the new and earlier NSHM appear less than those seen between much earlier national models, indicating that some degree of consistency has been achieved in the national-scale pattern of hazard estimates, at least for return periods of 475 years and greater.Online Material: Table of fault source parameters for the 2010 national seismichazard model.
The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.
Active fault traces are a surface expression of permanent deformation that accommodates the motion within and between adjacent tectonic plates. We present an updated national-scale model for active faulting in New Zealand, summarize the current understanding of fault kinematics in 15 tectonic domains, and undertake some brief kinematic analysis including comparison of fault slip rates with GPS velocities. The model contains 635 simplified faults with tabulated parameters of their attitude (dip and dip-direction) and kinematics (sense of movement and rake of slip vector), net slip rate and a quality code. Fault density and slip rates are, as expected, highest along the central plate boundary zone, but the model is undoubtedly incomplete, particularly in rapidly eroding mountainous areas and submarine areas with limited data. The active fault data presented are of value to a range of kinematic, active fault and seismic hazard studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.