Flavonoids normally accumulate in plants as O-glycosylated derivatives, but several species, including major cereal crops, predominantly synthesize flavone-C-glycosides, which are stable to hydrolysis and are biologically active both in planta and as dietary components. An enzyme (OsCGT) catalyzing the UDPglucose-dependent C-glucosylation of 2-hydroxyflavanone precursors of flavonoids has been identified and cloned from rice (Oryza sativa ssp. indica), with a similar protein characterized in wheat (Triticum aestivum L.). OsCGT is a 49-kDa family 1 glycosyltransferase related to known O-glucosyltransferases. The recombinant enzyme C-glucosylated 2-hydroxyflavanones but had negligible O-glucosyltransferase activity with flavonoid acceptors. Enzyme chemistry studies suggested that OsCGT preferentially C-glucosylated the dibenzoylmethane tautomers formed in equilibrium with 2-hydroxyflavanones. The resulting 2-hydroxyflavanone-C-glucosides were unstable and spontaneously dehydrated in vitro to yield a mixture of 6C-and 8C-glucosyl derivatives of the respective flavones. In contrast, in planta, only the respective 6C-glucosides accumulated. Consistent with this selectivity in glycosylation product, a dehydratase activity that preferentially converted 2-hydroxyflavanone-Cglucosides to the corresponding flavone-6C-glucosides was identified in both rice and wheat. Our results demonstrate that cereal crops synthesize C-glucosylated flavones through the concerted action of a CGT and dehydratase acting on activated 2-hydroxyflavanones, as an alternative means of generating flavonoid metabolites.
The Genome Database for Rosaceae (GDR, https://www.rosaceae.org) is an integrated web-based community database resource providing access to publicly available genomics, genetics and breeding data and data-mining tools to facilitate basic, translational and applied research in Rosaceae. The volume of data in GDR has increased greatly over the last 5 years. The GDR now houses multiple versions of whole genome assembly and annotation data from 14 species, made available by recent advances in sequencing technology. Annotated and searchable reference transcriptomes, RefTrans, combining peer-reviewed published RNA-Seq as well as EST datasets, are newly available for major crop species. Significantly more quantitative trait loci, genetic maps and markers are available in MapViewer, a new visualization tool that better integrates with other pages in GDR. Pathways can be accessed through the new GDR Cyc Pathways databases, and synteny among the newest genome assemblies from eight species can be viewed through the new synteny browser, SynView. Collated single-nucleotide polymorphism diversity data and phenotypic data from publicly available breeding datasets are integrated with other relevant data. Also, the new Breeding Information Management System allows breeders to upload, manage and analyze their private breeding data within the secure GDR server with an option to release data publicly.
Proof of concept of Bayesian integrated QTL analyses across pedigree-related families from breeding programs of an outbreeding species. Results include QTL confidence intervals, individuals' genotype probabilities and genomic breeding values. Bayesian QTL linkage mapping approaches offer the flexibility to study multiple full sib families with known pedigrees simultaneously. Such a joint analysis increases the probability of detecting these quantitative trait loci (QTL) and provide insight of the magnitude of QTL across different genetic backgrounds. Here, we present an improved Bayesian multi-QTL pedigree-based approach on an outcrossing species using progenies with different (complex) genetic relationships. Different modeling assumptions were studied in the QTL analyses, i.e., the a priori expected number of QTL varied and polygenic effects were considered. The inferences include number of QTL, additive QTL effect sizes and supporting credible intervals, posterior probabilities of QTL genotypes for all individuals in the dataset, and QTL-based as well as genome-wide breeding values. All these features have been implemented in the FlexQTL(™) software. We analyzed fruit firmness in a large apple dataset that comprised 1,347 individuals forming 27 full sib families and their known ancestral pedigrees, with genotypes for 87 SSR markers on 17 chromosomes. We report strong or positive evidence for 14 QTL for fruit firmness on eight chromosomes, validating our approach as several of these QTL were reported previously, though dispersed over a series of studies based on single mapping populations. Interpretation of linked QTL was possible via individuals' QTL genotypes. The correlation between the genomic breeding values and phenotypes was on average 90 %, but varied with the number of detected QTL in a family. The detailed posterior knowledge on QTL of potential parents is critical for the efficiency of marker-assisted breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.