Fast-scan cyclic voltammetry has depended on background subtraction to quantify small changes in neurotransmitter concentration. Because of this requirement, measurements of absolute concentrations using fast-scan cyclic voltammetry have been limited. Here we develop and characterize fast-scan controlled-adsorption voltammetry (FSCAV), which enables direct measurements of absolute concentrations in vitro without the use of flow injection to change the concentration. This enables probing the diffusion-controlled adsorption dynamics of biogenic amines and other adsorbing species. An implicit finite-difference model of mass-transport-limited adsorption was developed and is in agreement with experimental results. Optimization of FSCAV yielded a sensitivity of 81 ± 11 nA/μM for dopamine, corresponding to a limit of detection of 3.7 ± 0.5 nM. Through the combination of novel instrumentation and validated computer simulations, we show that FSCAV is an important measurement tool that can be used to determine absolute concentrations and study mass-transport-limited adsorption.
Tonic neurochemical dopamine activity underlies many brain functions; however a consensus on this important concentration has not yet been reached. In this work, we introduce in vivo fast-scan controlled-adsorption voltammetry to report tonic dopamine concentrations (90 ± 9 nM) and the dopamine diffusion coefficient (1.05 ± 0.09 ×10−6 cm2/s) in the mouse brain.
Adenosine triphosphate (ATP)-capped silver nanoparticles (ATP-Ag NPs) were synthesized by reduction of AgNO(3) with borohydride in water with ATP as a capping ligand. The NPs obtained were characterized using transmission electron microscopy (TEM), UV-vis absorption spectroscopy, X-ray diffraction, and energy-dispersive X-ray analysis. A typical preparation produced ATP-Ag NPs with diameters of 4.5 ± 1.1 nm containing ~2800 Ag atoms and capped with 250 ATP capping ligands. The negatively charged ATP caps allow NP incorporation into layer-by-layer (LbL) films with poly(diallyldimethylammonium) chloride at thiol-modified Au electrode surfaces. Cyclic voltammetry in a single-layer LbL film of NPs showed a chemically reversible oxidation of Ag NPs to silver halide NPs in aqueous halide solutions and to Ag(2)O NPs in aqueous hydroxide solutions. TEM confirmed that this takes place via a redox-driven solid-state phase transformation. The charge for these nontopotactic phase transformations corresponded to a one-electron redox process per Ag atom in the NP, indicating complete oxidation and reduction of all Ag atoms in each NP during the electrochemical phase transformation.
Low-dose sub-anesthetic ketamine infusion treatment has led to a long-term reduction of treatment-resistant depression and posttraumatic stress disorder (PTSD) symptom severity, as well as reduction of chronic pain states, including migraine headaches. Ketamine also is known to change oscillatory electric brain activity. One commonality between migraine headaches, depression, PTSD, Parkinson’s disease (PD) and L-DOPA-induced dyskinesias (LID) is hypersynchrony of electric activity in the brain, including the basal ganglia. Therefore, we investigated the use of low-dose sub-anesthetic ketamine in the treatment of LID. In a preclinical rodent model of LID, ketamine (5 – 20 mg/kg) led to long-term dose-dependent reduction of abnormal involuntary movements, only when low-dose ketamine was given for 10 hours continuously (5 x i.p. injections two hours apart) and not after a single acute low-dose ketamine i.p. injection. Pharmacokinetic analysis of plasma levels showed ketamine and its major metabolites were not detectable any more at time points when a lasting anti-dyskinetic effect was seen, indicating a plastic change in the brain. This novel use of low-dose sub-anesthetic ketamine infusion could lead to fast clinical translation, and since depression and comorbid pain states are critical problems for many PD patients could open up the road to a new dual therapy for patients with LID.
Rapid, in situ trace metal analysis is essential for understanding many biological and environmental processes. For example, trace metals are thought to act as chemical messengers in the brain. In the environment, some of the most damaging pollution occurs when metals are rapidly mobilized and transported during hydrologic events (storms). Electrochemistry is attractive for in situ analysis, primarily because electrodes are compact, cheap and portable. Electrochemical techniques, however, do not traditionally report trace metals in real-time. In this work, we investigated the fundamental mechanisms of a novel method, based on fast-scan cyclic voltammetry (FSCV), that reports trace metals with sub-second temporal resolution at carbon-fiber microelectrodes (CFMs). Electrochemical methods and geochemical models were employed to find that activated CFMs rapidly adsorb copper, a phenomenon that greatly advances the temporal capabilities of electrochemistry. We established the thermodynamics of surface copper adsorption and the electrochemical nature of copper deposition onto CFMs and hence identified a unique adsorption-controlled electrochemical mechanism for ultra-fast trace metal analysis. This knowledge can be exploited in the future to increase the sensitivity and selectivity of CFMs for fast voltammetry of trace metals in a variety of biological and environmental models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.