Regulation of integrin affinity (activation) is essential for metazoan development and for many pathological processes. Binding of the talin phosphotyrosine-binding (PTB) domain to integrin beta subunit cytoplasmic domains (tails) causes activation, whereas numerous other PTB-domain-containing proteins bind integrins without activating them. Here we define the structure of a complex between talin and the membrane-proximal integrin beta3 cytoplasmic domain and identify specific contacts between talin and the integrin tail required for activation. We used structure-based mutagenesis to engineer talin and beta3 variants that interact with comparable affinity to the wild-type proteins but inhibit integrin activation by competing with endogenous talin. These results reveal the structural basis of talin's unique ability to activate integrins, identify an interaction that could aid in the design of therapeutics to block integrin activation, and enable engineering of cells with defects in the activation of multiple classes of integrins.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Filamins are large, actin-crosslinking proteins that connect multiple transmembrane and signaling proteins to the cytoskeleton. Here, we describe the high-resolution structure of an interface between filamin A and an integrin adhesion receptor. When bound, the integrin beta cytoplasmic tail forms an extended beta strand that interacts with beta strands C and D of the filamin immunoglobulin-like domain (IgFLN) 21. This interface is common to many integrins, and we suggest it is a prototype for other IgFLN domain interactions. Notably, the structurally defined filamin binding site overlaps with that of the integrin-regulator talin, and these proteins compete for binding to integrin tails, allowing integrin-filamin interactions to impact talin-dependent integrin activation. Phosphothreonine-mimicking mutations inhibit filamin, but not talin, binding, indicating that kinases may modulate this competition and provide additional means to control integrin functions.
Fundamental to cell adhesion and migration, integrins are large heterodimeric membrane proteins that uniquely mediate inside-out signal transduction, whereby adhesion to the extracellular matrix is activated from within the cell by direct binding of talin to the cytoplasmic tail of the b integrin subunit. Here, we report the first structure of talin bound to an authentic full-length b integrin tail. Using biophysical and whole cell measurements, we show that a specific ionic interaction between the talin F3 domain and the membrane-proximal helix of the b tail disrupts an integrin a/b salt bridge that helps maintain the integrin inactive state. Second, we identify a positively charged surface on the talin F2 domain that precisely orients talin to disrupt the heterodimeric integrin transmembrane (TM) complex. These results show key structural features that explain the ability of talin to mediate inside-out TM signalling.
Seventeen aurein peptides are present in the secretion from the granular dorsal glands of the Green and Golden Bell Frog Litoria aurea, and 16 from the corresponding secretion of the related Southern Bell Frog L. raniformis. Ten of these peptides are common to both species. Thirteen of the aurein peptides show wide-spectrum antibiotic and anticancer activity. These peptides are named in three groups (aureins 1±3) according to their sequences. Amongst the more active peptides are aurein 1.2 (GLFDIIKKIAESF-NH 2 ), aurein 2.2 (GLFDIVKKVVGALGSL-NH 2 ) and aurein 3.1 (GLFDIVKKIAGHIAGSI-NH 2 ). Both L. aurea and L. raniformis have endoproteases that deactivate the major membrane-active aurein peptides by removing residues from both the N-and C-termini of the peptides. The most abundant degradation products have two residues missing from the N-terminal end of the peptide. The solution structure of the basic peptide, aurein 1.2, has been determined by NMR spectroscopy to be an amphipathic a-helix with well-defined hydrophilic and hydrophobic regions. Certain of the aurein peptides (e.g. aureins 1.2 and 3.1) show anticancer activity in the NCI test regime, with LC 50 values in the 10 25 210 24 m range. The aurein 1 peptides have only 13 amino-acid residues: these are the smallest antibiotic and anticancer active peptides yet reported from an anuran. The longer aurein 4 and 5 peptides, e.g. aurein 4.1 (GLIQTIKEKLKELAGGLVTGIQS-OH) and aurein 5.1 (GLLDIVTGLLGNLIVDVLKPKTPAS-OH) show neither antibacterial nor anticancer activity.
Talin is a large flexible rod-shaped protein that activates the integrin family of cell adhesion molecules and couples them to cytoskeletal actin. It exists in both globular and extended conformations, and an intramolecular interaction between the N-terminal F3 FERM subdomain and the C-terminal part of the talin rod contributes to an autoinhibited form of the molecule. Here, we report the solution structure of the primary F3 binding domain within the C-terminal region of the talin rod and use intermolecular nuclear Overhauser effects to determine the structure of the complex. The rod domain (residues 1655-1822) is an amphipathic five-helix bundle; Tyr-377 of F3 docks into a hydrophobic pocket at one end of the bundle, whereas a basic loop in F3 (residues 316 -326) interacts with a cluster of acidic residues in the middle of helix 4. Mutation of Glu-1770 abolishes binding. The rod domain competes with 3-integrin tails for binding to F3, and the structure of the complex suggests that the rod is also likely to sterically inhibit binding of the FERM domain to the membrane.The cytoskeletal protein talin has emerged as a key player, both in regulating the affinity of the integrin family of cell adhesion molecules for ligand (1) and in coupling integrins to the actin cytoskeleton (2). Thus, depletion of talin results in defects in integrin activation (3), integrin signaling through focal adhesion kinase, the maintenance of cell spreading, and the assembly of focal adhesions in cultured cells (4). In the whole organism, studies on the single talin gene in worms (5) and flies (6) show that talin is essential for a variety of integrin-mediated events that are crucial for normal embryonic development. In vertebrates, there are two talin genes, and mice carrying a talin1 null allele fail to complete gastrulation (7). Tissue-specific inactivation of talin1 results in an inability to activate integrins in platelets (8, 9), defects in the membrane-cytoskeletal interface in megakaryocytes (10), and disruption of the myotendinous junction in skeletal muscle (11). In contrast, mice homozygous for a talin2 gene trap allele have no phenotype, although the allele may be hypomorphic (12).Recent structural studies have provided substantial insights into the molecular basis of talin action. Talin is composed of an N-terminal globular head (ϳ50 kDa) linked to an extended flexible rod (ϳ220 kDa). The talin head contains a FERM 2 domain (made up of F1, F2, and F3 subdomains) preceded by a domain referred to here as F0 (2). Studies by Wegener et al. (30) have shown how the F3 FERM subdomain, which has a phosphotyrosine binding domain fold, interacts with both the canonical NPXY motif and the membrane-proximal helical region of the cytoplasmic tails of integrin -subunits (13). The latter interaction apparently activates the integrin by disrupting the salt bridge between the integrin ␣-and -subunit tails that normally keeps integrins locked in a low affinity state. The observation that the F0 region is also important in integrin activati...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.