The human brain is remarkably plastic. The brain changes dramatically across development, with ongoing functional development continuing well into the third decade of life and substantial changes occurring again in older age. Dynamic changes in brain function are thought to underlie the innumerable changes in cognition, emotion, and behavior that occur across development. The brain also changes in response to experience, which raises important questions about how the environment influences the developing brain. Longitudinal functional magnetic resonance imaging (fMRI) studies are an essential means of understanding these developmental changes and their cognitive, emotional, and behavioral correlates. This paper provides an overview of common statistical models of longitudinal change applicable to developmental cognitive neuroscience, and a review of the functionality provided by major software packages for longitudinal fMRI analysis. We demonstrate that there are important developmental questions that cannot be answered using available software. We propose alternative approaches for addressing problems that are commonly faced in modeling developmental change with fMRI data.
BackgroundAt any one time, there are one billion people worldwide who are in the second decade of their life, and 1.8 billion in the 10–24 age range.Whilst a great deal of focus has been placed on healthy early years development, the adolescent years are also a unique period of opportunity: exposure to health-influencing behaviours such as alcohol consumption or cigarette smoking, may serve to establish patterns that have significant health consequences in later life. Although there is often an emphasis on risk-taking and detrimental health behaviours during adolescence, these years also provide significant opportunities for behaviour to be shaped in positive ways that may improve longer term health outcomes. However, it is firstly important to understand the complex physiological changes that are taking place within the human body during this period and their relationship with health-related behaviour. Such knowledge can help to inform health policy and intervention development.AimThe aim of this study is to gain a comprehensive understanding of the relationship between physiological development and health-related behaviours in adolescence.MethodsThe principles of an integrative review will be used. Such reviews are of use where research has emerged in different fields, to combine existing knowledge and produce a more extensive understanding. Studies from a range of different methodological approaches, published or unpublished, will be included. A range of databases and literature depositories will be searched using a pre-defined search strategy. The review will include studies that focus on adolescents (nominally, those aged 10–24 years). We will seek papers that focus on both physiological development and health behaviour, or papers focusing solely on physiological development if there are clear implications for health behaviour. Studies with a focus on participants with specific health conditions will be excluded.Two reviewers will independently screen potential studies for eligibility and quality; members of the project team will act as third reviewers in the case of uncertainty or discrepancy.Further analyses (e.g. meta-analysis, meta-synthesis, meta-summary) will be decided upon, and sub-set analyses carried out. Finally, an integrative summation will be produced, giving a critical analysis of the results and providing conclusions and recommendations.Electronic supplementary materialThe online version of this article (doi:10.1186/s13643-015-0173-5) contains supplementary material, which is available to authorized users.
Table of contentsI1 Introduction to the 2015 Brainhack ProceedingsR. Cameron Craddock, Pierre Bellec, Daniel S. Margules, B. Nolan Nichols, Jörg P. PfannmöllerA1 Distributed collaboration: the case for the enhancement of Brainspell’s interfaceAmanPreet Badhwar, David Kennedy, Jean-Baptiste Poline, Roberto ToroA2 Advancing open science through NiDataBen Cipollini, Ariel RokemA3 Integrating the Brain Imaging Data Structure (BIDS) standard into C-PACDaniel Clark, Krzysztof J. Gorgolewski, R. Cameron CraddockA4 Optimized implementations of voxel-wise degree centrality and local functional connectivity density mapping in AFNIR. Cameron Craddock, Daniel J. ClarkA5 LORIS: DICOM anonymizerSamir Das, Cécile Madjar, Ayan Sengupta, Zia MohadesA6 Automatic extraction of academic collaborations in neuroimagingSebastien DeryA7 NiftyView: a zero-footprint web application for viewing DICOM and NIfTI filesWeiran DengA8 Human Connectome Project Minimal Preprocessing Pipelines to NipypeEric Earl, Damion V. Demeter, Kate Mills, Glad Mihai, Luka Ruzic, Nick Ketz, Andrew Reineberg, Marianne C. Reddan, Anne-Lise Goddings, Javier Gonzalez-Castillo, Krzysztof J. GorgolewskiA9 Generating music with resting-state fMRI dataCaroline Froehlich, Gil Dekel, Daniel S. Margulies, R. Cameron CraddockA10 Highly comparable time-series analysis in NitimeBen D. FulcherA11 Nipype interfaces in CBRAINTristan Glatard, Samir Das, Reza Adalat, Natacha Beck, Rémi Bernard, Najmeh Khalili-Mahani, Pierre Rioux, Marc-Étienne Rousseau, Alan C. EvansA12 DueCredit: automated collection of citations for software, methods, and dataYaroslav O. Halchenko, Matteo Visconti di Oleggio CastelloA13 Open source low-cost device to register dog’s heart rate and tail movementRaúl Hernández-Pérez, Edgar A. Morales, Laura V. CuayaA14 Calculating the Laterality Index Using FSL for Stroke Neuroimaging DataKaori L. Ito, Sook-Lei LiewA15 Wrapping FreeSurfer 6 for use in high-performance computing environmentsHans J. JohnsonA16 Facilitating big data meta-analyses for clinical neuroimaging through ENIGMA wrapper scriptsErik Kan, Julia Anglin, Michael Borich, Neda Jahanshad, Paul Thompson, Sook-Lei LiewA17 A cortical surface-based geodesic distance package for PythonDaniel S Margulies, Marcel Falkiewicz, Julia M HuntenburgA18 Sharing data in the cloudDavid O’Connor, Daniel J. Clark, Michael P. Milham, R. Cameron CraddockA19 Detecting task-based fMRI compliance using plan abandonment techniquesRamon Fraga Pereira, Anibal Sólon Heinsfeld, Alexandre Rosa Franco, Augusto Buchweitz, Felipe MeneguzziA20 Self-organization and brain functionJörg P. Pfannmöller, Rickson Mesquita, Luis C.T. Herrera, Daniela DenticoA21 The Neuroimaging Data Model (NIDM) APIVanessa Sochat, B Nolan NicholsA22 NeuroView: a customizable browser-base utilityAnibal Sólon Heinsfeld, Alexandre Rosa Franco, Augusto Buchweitz, Felipe MeneguzziA23 DIPY: Brain tissue classificationJulio E. Villalon-Reina, Eleftherios Garyfallidis
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.