Cell-cell fusion is a crucial and highly regulated event in the genesis of both form and function of many tissues. One particular type of cell fusion, myoblast fusion, is a key cellular process that shapes both the formation and repair of muscle. Despite its importance for human health, the mechanisms underlying this process are still not well understood. The purpose of this review is to highlight the recent literature pertaining to myoblast fusion and to focus on a comparison of these studies across several model systems, particularly the fly, zebrafish and mouse. Advances in technical analysis and imaging have allowed identification of new fusion genes and propelled further characterization of previously identified genes in each of these systems. Among the cellular steps identified as critical for myoblast fusion is migration, recognition, adhesion, membrane alignment and membrane pore formation and resolution. Importantly, striking new evidence indicates that orthologous genes govern several of these steps across these species. Taken together, comparisons across three model systems are illuminating a once elusive process, providing exciting new insights and a useful framework of genes and mechanisms.
During animal development, Wnt/Wingless (Wg) signaling is required for the patterning of multiple tissues. While insufficient signal transduction is detrimental to normal development, ectopic activation of the pathway can be just as devastating. Thus, numerous controls exist to precisely regulate Wg signaling levels. Endocytic trafficking of pathway components has recently been proposed as one such control mechanism. Here, we characterize the vesicular trafficking of Wg and its receptors, Arrow and DFrizzled-2 (DFz2), and investigate whether trafficking is important to regulate Wg signaling during dorsoventral patterning of the larval wing. We demonstrate a role for Arrow and DFz2 in Wg internalization. Subsequently, Wg, Arrow and DFz2 are trafficked through the endocytic pathway to the lysosome, where they are degraded in a hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-dependent manner. Surprisingly, we find that Wg signaling is not attenuated by lysosomal targeting in the wing disc. Rather, we suggest that signaling is dampened intracellularly at an earlier trafficking step. This is in contrast to patterning of the embryonic epidermis, where lysosomal targeting is required to restrict the range of Wg signaling. Thus, signal modulation by endocytic routing will depend on the tissue to be patterned and the goals during that patterning event.
In the Drosophila embryo, body wall muscles are formed by the fusion of two cell types, Founder Cells (FCs) and Fusion Competent Myoblasts (FCMs). Using an enhancer derived from the Dmef2 gene ([C/D]*), we report the first GAL4 driver specifically expressed in FCMs. We have determined that this GAL4 driver causes expression in a subset of FCMs and, upon fusion, in developing myotubes from stage 14 onwards. In addition, we have shown that using this Dmef2-5x[C/D]*-GAL4 driver to express dominant negative Rac in only FCMs causes a partial fusion block. This novel GAL4 driver will provide a useful reagent to study Drosophila myoblast fusion and muscle differentiation.
Background:The sublingual mucosa has been used for many years to apply allergenic extracts for the purpose of specific immunotherapy (IT). Although sublingual IT (SLIT) is both safe and efficacious, the density of antigen-presenting cells is higher in other regions of the oral cavity and vestibule, which make them a potentially desirable target for IT.Objective:To present the concept of oral mucosal IT (OMIT) and to provide pilot data for this extended application of SLIT.Methods:An open-label, 12-month, prospective study was undertaken as a preliminary step before a full-scale clinical investigation. Twenty-four individuals with allergic rhinitis received IT by applying allergenic extracts daily to either the oral vestibule plus oral cavity mucosa by using a glycerin-based toothpaste or to the sublingual mucosa by using 50% glycerin liquid drops. Adverse events, adherence rates, total combined scores, rhinoconjunctivitis quality-of-life questionnaire scores, changes in skin reactivity, and changes in serum antibody levels were measured for each participant.Results:No severe adverse events occurred in either group. The adherence rate was 80% for the OMIT group and 62% for the SLIT group (p = 0.61). Decreased total combined scores were demonstrated for both the OMIT group (15.6%) and the SLIT group (22.3%), although this decrease did not reach statistical significance in either group. Both groups achieved a meaningful clinical improvement of at least 0.5 points on rhinoconjunctivitis quality-of-life questionnaire. A statistically significant rise in specific immunoglobulin G4 (IgG4) was seen in both groups over the first 6 months of treatment.Conclusion:OMIT and SLIT demonstrated similar safety profiles and adherence rates. Measurements of clinical efficacy improved for both groups, but only changes in IgG4 achieved statistical significance. These pilot data provide enough evidence to proceed with a full-scale investigation to explore the role of OMIT in the long-term management of allergic rhinitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.