Metabolite identification studies involve the detection and structural characterization of the biotransformation products of drug candidates. These experiments are necessary throughout the drug discovery and development process. The use of high-resolution chromatography and high-resolution mass spectrometry together with data processing using mass defect filtering is described for in vitro and in vivo metabolite identification studies. Data collection was done using UPLC coupled with an orthogonal hybrid quadrupole time-of-flight mass spectrometer. This experimental approach enabled the use of MS(E) data collection (where E represents collision energy) which has previously been shown to be a powerful approach for metabolite identification studies. Post-acquisition processing with a prototype mass defect filtering program was used to eliminate endogenous interferences in the study samples, greatly enhancing the discovery of metabolites. The ease of this approach is illustrated by results showing the detection and structural characterization of metabolites in plasma from a preclinical rat pharmacokinetic study.
A fast and robust method for lipid profiling utilizing liquid chromatography coupled with mass spectrometry has been demonstrated and validated for the analysis of human plasma. This method allowed quantification and identification of lipids in human plasma using parallel alternating low energy and high energy collision spectral acquisition modes. A total of 275 [corrected] lipids were identified and quantified (as relative concentrations) in both positive and negative ion electrospray ionization mode. The method was validated with five nonendogenous lipids, and the linearity (r(2) better than 0.994) and the intraday and interday repeatability (relative standard deviation, 4-6% and 5-8%, respectively) were satisfactory. The developed lipid profiling method was successfully applied for the analysis of plasma from osteoarthritis (OA) patients. The multivariate statistical analysis by partial least-squares-discrimination analysis suggested an altered lipid metabolism associated with osteoarthritis and the release of arachidonic acid from phospholipids.
Ultraperformance liquid chromatography coupled with hybrid quadrupole/ion mobility/orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (UPLC-IM-MS) was used to study the isomeric transformations of trans-5-caffeoylquinic acid, an extremely active compound present in multiple vegetables, fruits, and beverages. The UPLC/oa-TOF MS results proved that in phosphate buffer (pH 7.4), plasma, or urine sample, trans-5-caffeoylquinic acid first isomerizes to trans-4-caffeoylquinic acid and then to trans-3-caffeoylquinic acid by intramolecular acyl migration. When exposed to UV light, trans-3-, -4-, and -5-caffeoylquinic acids undergo cis/trans isomerization to form cis isomers. The isomerization was solely dependent on the pH of the matrix, as well as the incubation temperature, and was independent of metabolic enzymes. UPLC-IM-MS results revealed that a reversible cis/trans isomerization of caffeoylquinic acids could also be induced by the electric field in an electrospray source. Thus, understanding the possible role of electric field-induced isomerization of caffeoylquinic acids may help lessen the confusion between gas phase phenomena and liquid state chemistry when applying IM-MS analysis. The comprehensive understanding of caffeoylquinic acid isomerization transformations is crucial for the appropriate handling of samples and interpretation of experimental data.
cArbidol is a broad-spectrum antiviral drug that is used clinically to treat influenza. In this study, the pharmacokinetics, metabolism, and excretion of arbidol were investigated in healthy male Chinese volunteers after a single oral administration of 200 mg of arbidol hydrochloride. A total of 33 arbidol metabolites were identified in human plasma, urine, and feces. The principal biotransformation pathways included sulfoxidation, dimethylamine N-demethylation, glucuronidation, and sulfate conjugation. The major drug-related component in the plasma was sulfinylarbidol (M6-1), followed by unmetabolized arbidol, N-demethylsulfinylarbidol (M5), and sulfonylarbidol (M8). The exposures of M5, M6-1, and M8, as determined by the metabolite-to-parent area under the plasma concentration-time curve from 0 to t (AUC 0-t ) ratio, were 0.9 ؎ 0.3, 11.5 ؎ 3.6, and 0.5 ؎ 0.2, respectively. In human urine, glucuronide and sulfate conjugates were detected as the major metabolites, accounting for 6.3% of the dose excreted within 0 to 96 h after drug administration. The fecal specimens mainly contained the unchanged arbidol, accounting for 32.4% of the dose. Microsomal incubation experiments demonstrated that the liver and intestines were the major organs that metabolize arbidol in humans. CYP3A4 was the major isoform involved in arbidol metabolism, whereas the other P450s and flavin-containing monooxygenases (FMOs) played minor roles. These results indicated possible drug interactions between arbidol and CYP3A4 inhibitors and inducers. Further investigations are needed to understand the importance of M6-1 in the efficacy and safety of arbidol, because of its high plasma exposure and long elimination half-life (25.0 h).carboxylate} is a broad-spectrum antiviral compound. It was first marketed in 1993 for prophylaxis and treatment of influenza virus A and B infections (1). Recently, Teissier et al. reported that arbidol could inhibit viral glycoprotein conformational changes during membrane fusion by interacting with the phospholipid membrane and protein motifs enriched in aromatic residues (2). Clinical trials indicated that 200 mg of arbidol taken three times daily for 5 to 10 days reduces the duration of influenza by 1.7 to 2.65 days (3). Recent studies have extended the inhibitory activity of arbidol to other human viruses, such as hepatitis B and C viruses, rhinovirus 14, bird viruses, chikungunya virus, and respiratory syncytial virus (4, 5).Circulating metabolites have been known to contribute to or alter the pharmacological activities of the parent drug. The safety of circulating metabolites should be considered. Furthermore, identifying drug metabolic pathways is also important for predicting drug-drug interactions (DDIs). However, the current understanding of arbidol metabolism in humans is incomplete, and only a single study has been reported on the identification of human urinary metabolites after oral drug administration. Glucuronide arbidol (M18) and glucuronide sulfinylarbidol (M20-1 and M20-2) were detected as the m...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.