Abstract:The presence of a nucleotide pyrophosphatase (EC 3.6.1.9) on the plasma membrane of rat C6 glioma has been demonstrated by analysis of the hydrolysis of ATP labeled in the base and in the ␣-and ␥-phosphates. The enzyme degraded ATP into AMP and PP i and, depending on the ATP concentration, accounted for ϳ50 -75% of the extracellular degradation of ATP. The association of the enzyme with the plasma membrane was confirmed by ATP hydrolysis in the presence of a varying concentration of pyridoxal phosphate-6-azophenyl-2Ј,4Ј-disulfonic acid (PPADS), a membrane-impermeable inhibitor of the enzyme. PPADS concentration above 20 M abolished the degradation of ATP into AMP and PP i . The nucleotide pyrophosphatase has an alkaline pH optimum and a K m for ATP of 17 Ϯ 5 M. The enzyme has a broad substrate specificity and hydrolyzes nucleoside triphosphates, nucleoside diphosphates, dinucleoside polyphosphates, and nucleoside monophosphate esters but is inhibited by nucleoside monophosphates, adenosine 3Ј,5Ј-bisphosphate, and PPADS. The substrate specificity characterizes the enzyme as a nucleotide pyrophosphatase/phosphodiesterase I (PD-I). Immunoblotting and autoadenylylation identified the enzyme as a plasma cell differentiation antigen-related protein. Hydrolysis of ATP terminates the autophosphorylation of a nucleoside diphosphate kinase (NDPK/nm23) detected in the conditioned medium of C6 cultures. A function of the pyrophosphatase/PD-I and NDPK in the purinergic and pyrimidinergic signal transduction in C6 is discussed.
This review gives an overview of the current approaches to evaluate drug absorption potential in the different phases of drug discovery and development. Methods discussed include in silico models, artificial membranes as absorption models, in vitro models such as the Ussing chamber and Caco-2 monolayers, in situ rat intestinal perfusion and in vivo absorption studies. In silico models such as iDEA can help optimizing chemical synthesis since the fraction absorbed (Fa) can be predicted based on structural characteristics only. A more accurate prediction of Fa can be obtained by feeding the iDEA model with Caco-2 permeability data and solubility data at various pH's. Permeability experiments with artificial membranes such as the filter-IAM technology are high-throughput and offer the possibility to group compounds according to a low and a high permeability. Highly permeable compounds, however, need to be further evaluated in Caco-2 cells, since artificial membranes lack active transport systems and efflux mechanisms such as P-glycoprotein (PgP). Caco-2 and other "intestinal-like" cell lines (MDCK, TC-7, HT29-MTX, 2/4/A1) permit to perform mechanistic studies and identify drug-drug interactions at the level of PgP. The everted sac and Ussing chamber techniques are more advanced models in the sense that they can provide additional information with respect to intestinal metabolism. In situ rat intestinal perfusion is a reliable technique to investigate drug absorption potential in combination with intestinal metabolism, however, it is time consuming, and therefore not suited for screening purposes. Finally, in vivo absorption in animals can be estimated from bioavailability studies (ratio of the plasma AUC after oral and i.v. administration). The role of the liver in affecting bioavailability can be evaluated by portal vein sampling experiments in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.