Current mathematical scintillation theory describing laser propagation through the atmosphere has been developed for terrestrial environments. Scintillation expressions valid in all regimes of optical turbulence for propagation in the maritime environment, based on what we believe to be a newly developed marine atmospheric spectrum, have been developed for spherical waves. Path average values of the structure parameter, C(n)(2), were inferred from optical scintillation measurements of a diverged laser beam propagating in a marine environment, using scintillation expressions based on both terrestrial and marine refractive index spectra. In the moderate-to-strong fluctuation regime, the inferred marine C(n)(2) values were about 20% smaller than inferred terrestrial C(n)(2) values, but a minimal difference was observed in the weak fluctuation regime. Measurements of angle-of-arrival fluctuations were used to infer C(n)(2) values in the moderate-to-strong fluctuation regime, resulting in values of the structure parameter that were at least an order of magnitude larger than the two scintillation-inferred C(n)(2) values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.