Microfluidic cell cultures enable investigation of complex physiological tissue properties and functionalities. For convenience, they are often implemented with immortalized cell lines, but primary cells more closely approximate the in vivo biology. Our aim was to develop a biomimetic microfluidic model of the human airway using all primary cells. The model is comprised of airway epithelial cells cultured at an air-liquid interface, lung fibroblasts and polarized microvascular endothelial cells, respectively positioned in three vertically stacked, individually accessible compartments separated by nanoporous membranes. We report device fabrication, a gravity fed microfluidic system, and culture medium able to support functional co-cultures of all three primary human cell types. As characterized by imaging and permeability measurements, airway epithelial cells in microfluidic devices displayed mucociliary differentiation and barrier function. Subjacent fibroblasts and microvascular endothelial cells were added under conditions enabling co-culture for at least 5 days. Microfluidic airway models based on primary human cells in a relevant biomimetic configuration will improve physiological relevance and will enable novel disease modeling and drug development studies.
We report a microfluidic blood-brain barrier model that enables both physiological shear stress and optical transparency throughout the device. Brain endothelial cells grown in an optically transparent membrane-integrated microfluidic device were able to withstand physiological fluid shear stress using a hydrophilized polytetrafluoroethylene nanoporous membrane instead of the more commonly used polyester membrane. A functional three-dimensional microfluidic co-culture model of the neurovascular unit is presented that incorporates astrocytes in a 3D hydrogel and enables physiological shear stress on the membrane-supported endothelial cell layer.
Tissue-engineered bone grafts require an osteogenic cell source and a scaffold capable of supporting tissue regeneration. Hydroxyapatite (H), chitosan (C), and gelatin (G), when combined, produce a biomimetic scaffold with a chemical similarity to the main structural components of natural bone tissue. In this study a phase-separation technique was used to produce a porous 3D HCG scaffold, containing a network of cross-linked chitosan and gelatin fibrils coated in hydroxyapatite, with pore size readily controlled by freezing temperature. The HCG scaffolds were then seeded with human mesenchymal stem cells (hMSCs), using a depth filtration system after preconditioning with serum-containing medium for 7 days under either static or perfusion conditions. The effects of static and perfusion media preconditioning on protein adsorption, surface morphology, hMSC attachment, proliferation and osteogenic differentiation were examined. Perfusion preconditioning, as opposed to static preconditioning, enhances adsorption of ECM proteins, which in turn promotes hMSC proliferation and osteogenic differentiation. The results demonstrate the importance of convective flow in modulating the 3D HCG microenvironment and highlight its profound influence on 3D construct development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.