In this paper, the performance of a lightning protection system (LPS) on a grid-connected photovoltaic (PV) park is studied by simulating different scenarios with the use of an appropriate software tool. The aim of this paper is to highlight the importance of an LPS and optimize its design for the protection of equipment and personnel in case of a direct lightning strike. In particular, developed potential due to lightning strikes is examined considering isolated and non-isolated external LPS. Moreover, the effect of the separation distance on the lightning performance of the PV installation is investigated for different soil structures and grounding systems. The extracted results are expected to support the design and implementation of a secure PV park and endorse its uninterrupted operation considering techno-economically balanced protection measures.
A prerequisite for the proper and safe designing of a grounding system is the full knowledge of the ground structure in the terrain of installation. Through soil resistivity measurements, engineers are able to illustrate the ground profile, which constitutes the most significant parameter for the design of a grounding system and for determining the maximum permissible limits of step and touch voltages. This paper highlights the high importance and necessity for engineers to choose the proper measurement axes of soil resistivity in the terrain of interest and to choose suitable measurement depths, as well the combination of axes for the final determination of the ground profile. The variance of soil resistivity values, as a function of axis distance and the impact of axis placement on determining the uncertainty of measurements, is also analyzed in detail in this study. Furthermore, this work studies the value variance of step and touch voltages as a function of measurement axes, considering two- and three-layer soil models, based on soil resistivity field measurements performed at the university campus. Therefore, the proper and premeditated measurement of soil resistivity, particularly in anisotropic ground, is proved to be of major importance for the full designing of a safe grounding system.
Currently, lightning phenomenon, mechanisms, and impacts on lives and infrastructures have been satisfactorily decoded and studied. Sound knowledge of lightning parameters is available in international literature. Yet, there are few studies referring to lightning statistics such as the number of flashes over an area, current amplitude distribution, etc., except for official documentation from national weather services, perhaps because of the stochastic nature of lightning. This work presents full recorded data for lightning flashes over wind farms distributed at the Hellenic territory. The data come from real time measurements at wind farm stations from 2011 to 2020 and concern number of CG flashes and lightning current amplitude. They are statistically processed and analyzed and contain useful information regarding the lightning characteristics of various geographic regions all over the country. Furthermore, the study displays data from field measurements of ground resistance at wind turbines and highlights techniques of designing and enhancing grounding systems of wind turbines for given lightning protection level (LPL). The present study, therefore, provides stakeholders with useful data and noteworthy conclusions about lightning occurrence and characteristics in Greece in order to make informed decisions on the various project stages, such as selection of the wind farm site, proper and in-depth risk assessment, and investment in safety measures for personnel and equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.