HIF-1α is overexpressed in many human cancers compared to normal tissues due to the interaction of a multiplicity of factors and pathways that reflect specific genetic alterations and extracellular stimuli. We developed two HIF-1α chimeric reporter systems, HIF-1α/FLuc and HIF-1α(ΔODDD)/FLuc, to investigate the tightly controlled level of HIF-1α protein in normal (NIH3T3 and HEK293) and glioma (U87) cells. These reporter systems provided an opportunity to investigate the degradation of HIF-1α in different cell lines, both in culture and in xenografts. Using immunofluorescence microscopy, we observed different patterns of subcellular localization of HIF-1α/FLuc fusion protein between normal cells and cancer cells; similar differences were observed for HIF-1α in non-transduced, wild-type cells. A dynamic cytoplasmic-nuclear exchange of the fusion protein and HIF-1α was observed in NIH3T3 and HEK293 cells under different conditions (normoxia, CoCl2 treatment and hypoxia). In contrast, U87 cells showed a more persistent nuclear localization pattern that was less affected by different growing conditions. Employing a kinetic model for protein degradation, we were able to distinguish two components of HIF-1α/FLuc protein degradation and quantify the half-life of HIF-1α fusion proteins. The rapid clearance component (t1/2 ∼4–6 min) was abolished by the hypoxia-mimetic CoCl2, MG132 treatment and deletion of ODD domain, and reflects the oxygen/VHL-dependent degradation pathway. The slow clearance component (t1/2 ∼200 min) is consistent with other unidentified non-oxygen/VHL-dependent degradation pathways. Overall, the continuous bioluminescence readout of HIF-1α/FLuc stabilization in vitro and in vivo will facilitate the development and validation of therapeutics that affect the stability and accumulation of HIF-1α.
Although it has been suggested that REL is the critical target gene of 2p12-16 amplification in diffuse large B-cell lymphoma (DLBCL), little experimental evidence supports this notion. In the present study, we sought to evaluate the relationship between REL amplification and REL func-
Chromosomal translocations leading to deregulation of specific oncogenes characterize approximately 50% of cases of diffuse large B-cell lymphomas (DLBL). To characterize additional genetic features that may be of value in delineating the clinical characteristics of DLBL, we studied a panel of 96 cases at diagnosis consecutively ascertained at the Memorial Sloan-Kettering Cancer Center (MSKCC) for incidence of gene amplification, a genetic abnormality previously shown to be associated with tumor progression and clinical outcome. A subset of 20 cases was subjected to comparative genomic hybridization (CGH) analysis, which identified nine sites of chromosomal amplification (1q21-23, 2p12-16, 8q24, 9q34, 12q12-14, 13q32, 16p12, 18q21-22, and 22q12). Candidate amplified genes mapped to these sites were selected for further analysis based on their known roles in lymphoid cell and lymphoma development, and/or history of amplification in tumors. Probes for six genes, which fulfilled these criteria,REL (2p12-16), MYC (8q24), BCL2 (18q21),GLI, CDK4, and MDM2 (12q13-14), were used in a quantitative Southern blotting analysis of the 96 DLBL DNAs. Each of these genes was amplified (four or more copies) with incidence ranging from 11% to 23%. This analysis is consistent with our previous finding that REL amplification is associated with extranodal presentation. In addition, BCL2 rearrangement and/or REL, MYC, BCL2, GLI,CDK4, and MDM2 amplification was associated with advanced stage disease. These data show, for the first time, that amplification of chromosomal regions and genes is a frequent phenomenon in DLBL and demonstrates their potential significance in lymphomagenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.