Male fertility has been deteriorating worldwide for considerable time, with the greatest deterioration recorded mainly in the United States, Europe countries, and Australia. That is, especially in countries where an abundance of chemicals called endocrine disruptors has repeatedly been reported, both in the environment and in human matrices. Human exposure to persistent and non-persistent chemicals is ubiquitous and associated with endocrine-disrupting effects. This group of endocrine disrupting chemicals (EDC) can act as agonists or antagonists of hormone receptors and can thus significantly affect a number of physiological processes. It can even negatively affect human reproduction with an impact on the development of gonads and gametogenesis, fertilization, and the subsequent development of embryos. The negative effects of endocrine disruptors on sperm gametogenesis and male fertility in general have been investigated and repeatedly demonstrated in experimental and epidemiological studies. Male reproduction is affected by endocrine disruptors via their effect on testicular development, impact on estrogen and androgen receptors, potential epigenetic effect, production of reactive oxygen species or direct effect on spermatozoa and other cells of testicular tissue. Emerging scientific evidence suggests that the increasing incidence of male infertility is associated with the exposure to persistent and non-persistent endocrine-disrupting chemicals such as bisphenols and perfluoroalkyl chemicals (PFAS). These chemicals may impact men’s fertility through various mechanisms. This study provides an overview of the mechanisms of action common to persistent (PFAS) and nonpersistent (bisphenols) EDC on male fertility.
Exposure to bisphenols is related to negative effects on male reproduction. The bisphenols exposure is associated with several modes of action including negative impact on the blood–testis barrier (BTB) in testes or direct effect on spermatozoa. Bisphenols have been detected in human seminal plasma, but the possible mechanism of seminal transfer of bisphenols is not clear. Some authors consider the transfer through the blood–testis barrier to be crucial. Therefore, in this work, we compared normozoospermic men and men after vasectomy who have interrupted vas deferens and their ejaculate does not contain testicular products. We measured the concentration of bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) in the urine and seminal plasma of these men using liquid chromatography tandem mass spectrometry (LC/MSMS). We found that the ratio of urinary and seminal plasma content of bisphenols did not differ in normozoospermic men or men after vasectomy. From the obtained data, it can be concluded that the pathways of transport of bisphenols into seminal plasma are not primarily through the testicular tissue, but this pathway is applied similarly to other routes of transmission by a corresponding ejaculate volume ratio. To a much greater extent than through testicular tissue, bisphenols enter the seminal plasma mainly as part of the secretions of the accessory glands.
The compounds of seminal plasma have great potential as biomarkers of male fertility and can be used as a diagnostic tool for types of azoospermia. Azoospermia occurs in approximately 1% of the male population, and for an effective therapy of this form of male infertility, it is important to distinguish between obstructive and non-obstructive azoospermia. Proteins in seminal plasma can serve as biomarkers for diagnosing azoospermia. Considering the various types of obstructions, a combination of multiple proteins is advisable for diagnostic purposes. In this context, testicular and epididymal proteins are particularly significant, as they are specific to these tissues and typically absent in ejaculate during most obstructions. A combination of multiple biomarkers is more effective than the analysis of a single protein. This group of markers contains TEX101 and ECM1 proteins, combined detections of these two bring a diagnostic output with a high sensitivity and specificity. Similar results were observed for combined detection of TEX101 and SPAG1. The effective using of specific biomarkers from seminal plasma can significantly improve the existing approaches to diagnosis of the causes of male infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.