The compounds of seminal plasma have great potential as biomarkers of male fertility and can be used as a diagnostic tool for types of azoospermia. Azoospermia occurs in approximately 1% of the male population, and for an effective therapy of this form of male infertility, it is important to distinguish between obstructive and non-obstructive azoospermia. Proteins in seminal plasma can serve as biomarkers for diagnosing azoospermia. Considering the various types of obstructions, a combination of multiple proteins is advisable for diagnostic purposes. In this context, testicular and epididymal proteins are particularly significant, as they are specific to these tissues and typically absent in ejaculate during most obstructions. A combination of multiple biomarkers is more effective than the analysis of a single protein. This group of markers contains TEX101 and ECM1 proteins, combined detections of these two bring a diagnostic output with a high sensitivity and specificity. Similar results were observed for combined detection of TEX101 and SPAG1. The effective using of specific biomarkers from seminal plasma can significantly improve the existing approaches to diagnosis of the causes of male infertility.
Exposure to bisphenols is related to negative effects on male reproduction. The bisphenols exposure is associated with several modes of action including negative impact on the blood–testis barrier (BTB) in testes or direct effect on spermatozoa. Bisphenols have been detected in human seminal plasma, but the possible mechanism of seminal transfer of bisphenols is not clear. Some authors consider the transfer through the blood–testis barrier to be crucial. Therefore, in this work, we compared normozoospermic men and men after vasectomy who have interrupted vas deferens and their ejaculate does not contain testicular products. We measured the concentration of bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) in the urine and seminal plasma of these men using liquid chromatography tandem mass spectrometry (LC/MSMS). We found that the ratio of urinary and seminal plasma content of bisphenols did not differ in normozoospermic men or men after vasectomy. From the obtained data, it can be concluded that the pathways of transport of bisphenols into seminal plasma are not primarily through the testicular tissue, but this pathway is applied similarly to other routes of transmission by a corresponding ejaculate volume ratio. To a much greater extent than through testicular tissue, bisphenols enter the seminal plasma mainly as part of the secretions of the accessory glands.
Objective: A summary of new knowledge on embryo implantation in dependence on quality of the endometrium. Methods: Literature review from August 2022 of the relevant publications in Web of Science, Scopus and PubMed/Medline databases, focused on “endometrial receptivity”, “polycystic ovary syndrome”, “endometriosis”, “SARS-CoV-2”. Results: The receptive state of the endometrium is a result of physiological remodeling and immune system activity modulated by the microbiome. This balance can be disturbed by myomas, polyps, sactosalpings, adenomyosis, endometriosis, polycystic ovary syndrome, infections. The effect of SARS-CoV-2 infection is being discussed. For a successful implantation, timing of transfer is crucial. The ultrasound examination is used conventionally. In specific cases, hysteroscopy and endometrium bio psy are recommended. Histological and immunohistochemical evaluation is performed together with examination of microbiome or transcriptome. To support the implantation, gestagenes are used, or metformin in the patients with polycystic ovary syndrome. In cases of a repeated implantation failure, the intrauterine infusion of mononuclear cells or platelet rich plasma is used, subcutaneous application of granulocyte colony stimulating growth factor, intravenous application of atosiban or intrauterine application of human chorionic gonadotropin. Conclusion: Recent research in the field of transcriptomics, proteomics and reproductive immunology uncovers the process of implantation more deeply and opens a new stage of the assisted reproduction. Key words: receptivity of endometrium – implantation – SARS-CoV-2 – endometriosis – polycystic ovaries – adenomyosis – proteome – secretome
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.