Service Level Agreements (SLAs) represent service management contracts that are processed by monitoring and measurement mechanisms for the evaluation of the signatories adherence to the agreed service levels during service execution. The paper discusses SLA data management characteristics that need to be considered in the design of data models for SLA documents. The SLA anatomy is introduced with respect to the Web Service Level Agreement (WSLA) [1] language specification. Furthermore, the paper highlights current obstacles for the integration of automated SLA management in the cloud business setting. The contributed SLA data analysis maps SLA terms to data management attributes according to their operational relevance during the SLA activity. We present an SLA digraph model for the automated SLA formulation and data handling. The SLA digraph is introduced as a programming module that sits on the application layer and communicates with backend data stores for the SLA persistence
Abstract-SAGA is a high-level programming interface which provides the ability to develop distributed applications in an infrastructure independent way. In an earlier paper, we discussed how SAGA was used to develop a version of MapReduce which provided the user with the ability to control the relative placement of compute and data, whilst utilizing different distributed infrastructure. In this paper, we use the SAGA-based implementation of MapReduce, and demonstrate its interoperability across Clouds and Grids. We discuss how a range of cloud adaptors have been developed for SAGA. The major contribution of this paper is the demonstration -possibly the first ever, of interoperability between different Clouds and Grids, without any changes to the application. We analyse the performance of SAGA-MapReduce when using multiple, different, heterogeneous infrastructure concurrently for the same problem instance; However, we do not strive to provide a rigorous performance model, but to provide a proof-of-concept of application-level interoperability and illustrate its importance.
Mediterranean ecosystems are threatened by water and nutrient scarcity and continuous loss of soil organic carbon. Urban agglomerations and rural ecosystems in the Mediterranean region and globally are interlinked through the flows of resources/nutrients and wastes. Contributing to balancing these cycles, the present study advocates standardized biochar as a soil amendment, produced from Mediterranean suitable biowaste, for closing the nutrient loop in agriculture, with parallel greenhouse gas reduction, enhancing air quality in urban agglomerations, mitigating climate change. The study’s scope is the contextualization of pyrolytic conditions and biowaste type effects on the yield and properties of biochar and to shed light on biochar’s role in soil fertility and climate change mitigation. Mediterranean-type suitable feedstocks (biowaste) to produce biochar, in accordance with biomass feedstocks approved for use in producing biochar by the European Biochar Certificate, are screened. Data form large-scale and long-period field experiments are considered. The findings advocate the following: (a) pyrolytic biochar application in soils contributes to the retention of important nutrients for agricultural production, thereby reducing the use of fertilizers; (b) pyrolysis does not release carbon dioxide to the atmosphere, contributing positively to the balance of carbon dioxide emissions to the atmosphere, with carbon uptake by plant photosynthesis; (c) biochar stores carbon in soils, counterbalancing the effect of climate change by sequestering carbon; (d) there is an imperative need to identify the suitable feedstock for the production of sustainable and safe biochar from a range of biowaste, according to the European Biochar Certificate, for safe crop production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.