A genome-wide microRNA (miRNome) screen coupled with high-throughput monitoring of protein levels reveals complex, modular miRNA regulation of the EGFR-driven cell-cycle network, and identifies new miRNAs that can suppress breast cancer cell proliferation.
Cycles in graphs play an important role in many applications, e.g., analysis of electrical networks, analysis of chemical and biological pathways, periodic scheduling, and graph drawing. From a mathematical point of view, cycles in graphs have a rich structure. Cycle bases are a compact description of the set of all cycles of a graph. In this paper, we survey results on cycle bases and prove new ones. We introduce different kinds of cycle bases, characterize them in terms of their cycle matrix, and prove structural results about them, in particular, a-priori length bounds. We give polynomial algorithms for the minimum cycle basis problem for some of the classes and prove APX -hardness for others. We also discuss three applications and show that they require different kinds of cycle bases.
Currently about 2.71 billion humans use a smartphone worldwide. Although smartphone technology has brought many advances, a growing number of scientists discuss potential detrimental effects due to excessive smartphone use. Of importance, the likely culprit to understand over-usage is not the smartphone itself, but the excessive use of applications installed on smartphones. As the current business model of many app-developers foresees an exchange of personal data for allowance to use an app, it is not surprising that many design elements can be found in social media apps and Freemium games prolonging app usage. It is the aim of the present work to analyze several prominent smartphone apps to carve out such elements. As a result of the analysis, a total of six different mechanisms are highlighted to illustrate the prevailing business model in smartphone app development. First, these app-elements are described and second linked to classic psychological/economic theories such as the mere-exposure effect, endowment effect, and Zeigarnik effect, but also to psychological mechanisms triggering social comparison. It is concluded that many of the here presented app-elements on smartphones are able to prolong usage time, but it is very hard to understand such an effect on the level of a single element. A systematic analysis would require insights into app data usually only being available for the app-designers, but not for independent scientists. Nevertheless, the present work supports the notion that it is time to critically reflect on the prevailing business model of ‘user data in exchange for app-use allowance’. Instead of using a service in exchange for data, it ultimately might be better to ban or regulate certain design elements in apps to come up with less addictive products. Instead, users could pay a reasonable fee for an app service.
Bipartite graphs are common in many complex systems as they describe a relationship between two different kinds of actors, e.g., genes and proteins, metabolites and enzymes, authors and articles, or products and consumers. A common approach to analyze them is to build a graph between the nodes on one side depending on their relationships with nodes on the other side; this so-called one-mode projection is a crucial step for all further analysis but a systematic approach to it was lacking so far. Here, we present a systematic approach that evaluates the significance of the co-occurrence for each pair of nodes v, w, i.e., the number of common neighbors of v and w. It turns out that this can be seen as a special case of evaluating the interestingness of an association rule in data mining. Based on this connection we show that classic interestingness measures in data mining cannot be applied to evaluate most real-world product-consumer relationship data. We thus introduce generalized interestingness measures for both, one-mode projections of bipartite graphs and data mining and show their robustness and stability by example. We also provide theoretical results that show that the old method cannot even be used as an approximative method. In a last step we show that the new interestingness measures show stable and significant results that result in attractive one-mode projections of bipartite graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.