We demonstrate that a one electron reduced product of the heme iron dioxygen adduct exists in solution not only as the commonly accepted iron(iii)-peroxo species, but coexists with its isomeric iron(ii)-superoxo form. This unusual reduced metal-superoxide adduct [M(ii)-O(2)(-)] is recently reported as a reactive intermediate in the case of non-heme extradiol dioxygenases and could also be generated by cryoreduction of a heme Fe(II)-O(2) adduct. The existence of iron(ii)-superoxo species in solution is consistent with IR, EPR, mass and Mössbauer spectra. The equilibrium between heme iron(iii)-peroxo and iron(ii)-superoxo forms is supported by density functional theory and explains our previous finding that upon release of coordinated (su)peroxide a corresponding iron(ii) complex remains. These results shed new light on the nature of heme iron(iii)-peroxo species that are key intermediates in the metalloenzyme-catalyzed dioxygen and hydrogen peroxide activation.
The solution behavior of iron(III) and iron(II) complexes of 5(4),10(4),15(4),20(4)-tetra-tert-butyl-5,10,15,20-tetraphenylporphyrin (H(2)tBuTPP) and the reaction with superoxide (KO(2)) in DMSO have been studied in detail. Applying temperature and pressure dependent NMR studies, the thermodynamics of the low-spin/high-spin equilibrium between bis- and mono-DMSO Fe(II) forms have been quantified (K(DMSO) = 0.082 ± 0.002 at 298.2 K, ΔH° = +36 ± 1 kJ mol(-1), ΔS° = +101 ± 4 J K(-1) mol(-1), ΔV° = +16 ± 2 cm(3) mol(-1)). This is a key activation step for substitution and inner-sphere electron transfer. The superoxide binding constant to the iron(II) form of the studied porphyrin complex was found to be (9 ± 0.5) × 10(3) M(-1), and does not change significantly in the presence of the externally added crown ether in DMSO (11 ± 4) × 10(3) M(-1). The rate constants for the superoxide binding (k(on) = (1.30 ± 0.01) × 10(5) M(-1) s(-1)) and release (k(off) = 11.6 ± 0.7 s(-1)) are not affected by the presence of the external crown ether in solution. The resulting iron(II)-superoxide adduct has been characterized (mass spectrometry, EPR, high-pressure UV/Vis spectroscopy) and upon controlled addition of a proton source it regenerates the starting iron(II) complex. Based on DFT calculations, the reaction product without neighboring positive charge has iron(II)-superoxo character in both high-spin side-on and low-spin end-on forms. The results are compared to those obtained for the analogous complex with covalently attached crown ether, and more general conclusions regarding the spin-state equilibrium of iron(II) porphyrins, their reaction with superoxide and the electronic structure of the product species are drawn.
Redox selectivity? Seven‐coordinate manganese(II) pentaazamacrocyclic complexes stimulate NO disproportionation by a novel dismutation mechanism based on the formation of labile metal–nitrosyl adducts and which is associated with the MnII/MnIII redox cycle. The metal‐bound NO in these aducts has the character and reactivity of NO− and NO+ species. Ex vivo studies suggest that superoxide dismutase mimics of this kind could interfere with NO‐mediated processes in biological milieu.
Redoxselektivität? Siebenfach koordinierte Mangan(II)‐Komplexe von Pentaazamakrocyclen fördern die NO‐Disproportionierung über einen neuartigen Dismutierungsmechanismus, der die Bildung labiler Metall‐Nitrosyl‐Addukte umfasst und mit dem MnII/MnIII‐Redoxzyklus verbunden ist (siehe Bild). Das metallgebundene NO zeigt in diesen Addukten die Reaktivität von NO− und NO+. Solche Superoxiddismutase‐Mimetika könnten in NO‐vermittelte Prozesse in biologischen Systemen eingreifen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.