How cells acquire complex shapes is a fundamental question in biology. Lauster et al. show that PHGAP/RENs associate with cortical microtubules preferentially along anticlinal cell faces, and they facilitate the spatially distinct deactivation of ROP2 in indentations. This interplay is essential for multipolarity of epidermal pavement cells.
In plants, the topological organization of membranes has mainly been attributed to the cell wall and the cytoskeleton. Additionally, few proteins, such as plant-specific remorins have been shown to function as protein and lipid organizers. Root nodule symbiosis requires continuous membrane re-arrangements, with bacteria being finally released from infection threads into membrane-confined symbiosomes. We found that mutations in the symbiosis-specific SYMREM1 gene result in highly disorganized perimicrobial membranes. AlphaFold modelling and biochemical analyses reveal that SYMREM1 oligomerizes into antiparallel dimers and may form a higher-order membrane scaffolding structure. This was experimentally confirmed when expressing this and other remorins in wall-less protoplasts is sufficient where they significantly alter and stabilize de novo membrane topologies ranging from membrane blebs to long membrane tubes with a central actin filament. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. Taken together we describe a plant-specific mechanism that allows the stabilization of large-scale membrane conformations independent of the cell wall.
Organization of membrane topologies in plants has so far been mainly attributed to the cell wall and the cytoskeleton. Taking rhizobial infections of legume root cells, where plasma membranes undergo dynamic and large-scale topology changes, as an initial model, we challenged this paradigm and tested whether additional scaffolds such as plant-specific remorins that accumulate on highly curved and often wall-less plasma membrane domains, control local membrane dynamics. Indeed, loss-of-function mutants of the remorin protein SYMREM1 failed to develop stabilized membrane tubes as found in colonized cells in wild-type plants, but released empty membrane spheres instead. Expression of this and other remorins in wall-less protoplasts allowed engineering different membrane topologies ranging from membrane blebs to long membrane tubes. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. This function is likely supported by remorin oligomerization into antiparallel dimers and the formation of higher order membrane scaffolding structures. Taken together we describe an evolutionary confined mechanism that allows the stabilization of large-scale membrane conformations and curvatures in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.