LiNbO 3 (LN) and LiTaO 3 (LT) materials of polar crystal structure exhibit a spontaneous polarization that can be changed by temperature. This phenomenon, commonly known as the pyroelectric effect, leads to the generation of surface charges that in turn are the source for a pyroelectrocatalytic or pyroelectrochemical activity of these materials described in this paper. It can also be regarded as a selective conversion of thermal via electrical to chemical energy based on the pyroelectric effect. In this context, we have investigated the impact of thermally excited pyroelectric LN and LT nano-and microcrystalline powder materials on the bacterium Escherichia coli in aqueous solutions. Powders have been prepared both by milling of commercially available single crystals and by precursorbased solution routes. Our results show that in dependence on the crystallite size and surface area of the pyroelectric particulate material in direct contact with the cells and/or their culture solution, a high antimicrobial activity can be achieved. On the basis of further experimental results of oxidative conversion of the fluorescent dye 2′,7′-dichlorofluorescin, a disinfection mechanism including the formation of reactive oxygen species at the pyroelectric particle surface is proposed. The phenomenon is discussed in analogy to the well-established photocatalytic disinfection mechanism.
Eukaryotic membranes contain small amounts of phospholipids that have regulatory effects on the physiological functions of cells, tissues, and organs. Phosphoinositides (PIs)-the phosphorylated derivatives of phosphatidylinositol-are one example of such regulatory lipids. Although PIs were described in plants decades ago, their contribution to the regulation of physiological processes in plants is not well understood. In the past few years, evidence has emerged that PIs are essential for plant function and development. Recently reported phenotypes associated with the perturbation of different PIs suggest that some subgroups of PIs influence specific processes. Although the molecular targets of PI-dependent regulation in plants are largely unknown, the effects of perturbed PI metabolism can be used to propose regulatory modules that involve particular downstream targets of PI regulation. This review summarizes phenotypes associated with the perturbation of the plant PI network to categorize functions and suggest possible downstream targets of plant PI regulation.
Increased commercialization of products based on metal oxide nanoparticles increases the likelihood that these nanoparticles will be released into aquatic environments, thus making relevant the assessment of their potential impacts on aquatic biota. Aquatic fungi are distributed worldwide and play a key role in organic matter turnover in freshwater ecosystems. The present study investigated the impacts of copper oxide spherical nanoparticles (CuO-NPs; <50 nm powder, 5 levels ≤200 mg/L) on cellular targets and antioxidant defenses in 5 fungal isolates collected from metal-polluted or nonpolluted streams. The CuO-NPs induced oxidative stress in aquatic fungi, as evidenced by intracellular accumulation of reactive oxygen species, and led to plasma membrane damage and DNA strand breaks in a concentration-dependent manner. Effects were more pronounced with a longer exposure time (3 d vs 10 d). Under CuO-NP exposure, mycelia of fungi collected from metal-polluted streams showed less oxidative stress and higher activities of superoxide dismutase and glutathione reductase compared with fungi from nonpolluted streams. The latter fungi responded to CuO-NPs with a stronger stimulation of glutathione peroxidase activity. These findings may indicate that fungi isolated from metal-polluted streams had a greater ability to maintain the pool of reduced glutathione than those from nonpolluted streams. Overall, results suggest that populations adapted to metals may develop mechanisms to cope with the oxidative stress induced by metal nanoparticles.
The Arabidopsis phosphoinositide kinase PIP5K2 has been implicated in the control of membrane trafficking and is important for development and growth. In addition to cytosolic functions of phosphoinositides, a nuclear phosphoinositide system has been proposed, but evidence for nuclear phosphoinositides in plants is limited. Fluorescence-tagged variants of PIP5K2 reside in the nucleus of Arabidopsis root meristem cells, in addition to reported plasma membrane localization. Here we report on the interaction of PIP5K2 with alpha-importins and characterize its nuclear localization sequences (NLSs). The PIP5K2 sequence contains four putative NLSs (NLSa-NLSd) and only a PIP5K2 fragment containing NLSs is imported into nuclei of onion epidermis cells upon transient expression. PIP5K2 interacts physically with alpha-importin isoforms in cytosolic split-ubiquitin-based yeast two-hybrid tests, in dot-blot experiments and in immuno-pull-downs. A 27-amino-acid fragment of PIP5K2 containing NLSc is necessary and sufficient to mediate the nuclear import of a large cargo fusion consisting of two mCherry markers fused to RubisCO large subunit. Substitution of basic residues in NLSc results in reduced import of PIP5K2 or other cargoes into plant nuclei. The data suggest that PIP5K2 is subject to active, alpha-importin-mediated nuclear import, consistent with a nuclear role for PIP5K2 in addition to its reported cytosolic functions. The detection of both substrate and product of PIP5K2 in plant nuclei according to reporter fluorescence and immunofluorescence further supports the notion of a nuclear phosphoinositide system in plants. Variants of PIP5K2 with reduced nuclear residence might serve as tools for the future functional study of plant nuclear phosphoinositides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.