High-resolution imaging of soft biological samples with atomic force microscopy (AFM) is challenging because they must be imaged with small forces to prevent deformation. Typically, AFM of those samples is performed with soft silicon cantilevers (k ≈ 0.1–10 N/m) and optical detection in a liquid environment. We set up a new microscope that uses a stiff qPlus sensor (k ≥ 1 kN/m). Several complex biologically-relevant solutions are non-transparent, and even change their optical properties over time, such as the cell culture medium we used. While this would be problematic for AFM setups with optical detection, it is no problem for our qPlus setup which uses electrical detection. The high stiffness of the qPlus sensor allows us to use small amplitudes in frequency-modulation mode and obtain high Q factors even in liquid. The samples are immersed in solution in a liquid cell and long tips are used, with only the tip apex submerged. We discuss the noise terms and compare the minimal detectable signal to that of soft cantilevers. Atomic resolution of muscovite mica was achieved in various liquids: H2O, Tris buffer and a cell culture medium. We show images of lipid membranes in which the individual head groups are resolved.
HTTPS is one of the most important protocols used to secure communication and is, fortunately, becoming more pervasive. However, especially the long tail of websites is still not sufficiently secured. HTTPS involves different types of users, e.g., end users who are forced to make security decisions when faced with warnings or administrators who are required to deal with cryptographic fundamentals and complex decisions concerning compatibility.In this work, we present the first qualitative study of both end user and administrator mental models of HTTPS. We interviewed 18 end users and 12 administrators; our findings reveal misconceptions about security benefits and threat models from both groups. We identify protocol components that interfere with secure configurations and usage behavior and reveal differences between administrator and end user mental models.Our results suggest that end user mental models are more conceptual while administrator models are more protocol-based. We also found that end users often confuse encryption with authentication, significantly underestimate the security benefits of HTTPS. They also ignore and distrust security indicators while administrators often do not understand the interplay of functional protocol components. Based on the different mental models, we discuss implications and provide actionable recommendations for future designs of user interfaces and protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.