Background: Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder associated with premutation CGG-repeat expansions (55–200 repeats) in the 5′ non-coding portion of the fragile X mental retardation 1 (FMR1) gene. Core features of FXTAS include progressive tremor/ataxia, cognitive decline, variable brain volume loss, and white matter disease. The principal histopathological feature of FXTAS is the presence of central nervous system (CNS) and non-CNS intranuclear inclusions.Objective: To further elucidate the molecular underpinnings of FXTAS through the proteomic characterization of human FXTAS cortexes.Results: Proteomic analysis of FXTAS brain cortical tissue (n = 8) identified minor differences in protein abundance compared to control brains (n = 6). Significant differences in FXTAS relative to control brain predominantly involved decreased abundance of proteins, with the greatest decreases observed for tenascin-C (TNC), cluster of differentiation 38 (CD38), and phosphoserine aminotransferase 1 (PSAT1); proteins typically increased in other neurodegenerative diseases. Proteins with the greatest increased abundance include potentially novel neurodegeneration-related proteins and small ubiquitin-like modifier 1/2 (SUMO1/2). The FMRpolyG peptide, proposed in models of FXTAS pathogenesis but only identified in trace amounts in the earlier study of FXTAS inclusions, was not identified in any of the FXTAS or control brains in the current study.Discussion: The observed proteomic shifts, while generally relatively modest, do show a bias toward decreased protein abundance with FXTAS. Such shifts in protein abundance also suggest altered RNA binding as well as loss of cell–cell adhesion/structural integrity. Unlike other neurodegenerative diseases, the proteome of end-stage FXTAS does not suggest a strong inflammation-mediated degenerative response.
Background: We have previously demonstrated that an alkaline extract of shredded pinecones yields a polyphenylpropanoid polysaccharide complex (PPC) that functions as an orally active immune adjuvant. Specifically, oral PPC can boost the number of antigen-specific memory CD8 + T cells generated in response to a variety of vaccine types (DNA, protein, and dendritic cell) and bias the response towards one that is predominately a T helper 1 type. Methods: An immune response was initiated by intraperitoneal injection of mice with Staphylococcus enterotoxin B (SEB). A group of mice received PPC by gavage three times per day on Days 0 and 1. The draining lymph nodes were analyzed 48-96 h post-injection for the numbers of reactive T cells, cytokine production, the generation of reactive oxygen species, and apoptotsis.
Introduction: As the clinical applications of medical genetics and genomics continue to expand, nongenetics professionals increasingly find themselves in the position of managing patients with genetic conditions. To prepare medical students to handle this future practice demand, it is imperative that they obtain skills and confidence in utilizing credible medical genetics resources to care for patients with genetic conditions. To this end, we developed active learning materials to introduce first-year medical students to these resources. Methods: This approximately 2-hour session targeted first-year medical students (123 students) and combined flipped classroom and small-group collaborative case-based learning models. Students first completed a hands-on preclass exercise, which guided them in navigating the Online Mendelian Inheritance in Man website, and then attended an in-person small-group classroom activity, which provided the opportunity to apply information obtained from credible medical genetics resources to a patient case. At the conclusion of the classroom activity, students voluntarily completed an anonymous survey. Results: Results of student postsession surveys showed that, regardless of previous exposure to medical genetics resources, this session increased both confidence in skills and future intention to use medical genetics resources. Discussion: Since the majority of students were unfamiliar with using specialized medical genetics resources prior to this educational intervention, the session functioned as a practical introduction to these essential resources. We propose that equipping medical students with skills that support inquiry-oriented learning, particularly in the early stage of training, can cultivate the practice of lifelong learning in medical genetics.
An author name was incorrectly spelled as "Verónica Martiínez-Cerdeño." The correct spelling is "Verónica Martínez-Cerdeño."The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.