Abstract.Rapid urbanization has contributed to an urban sanitation crisis in low-income countries. Residents in low-income, urban neighborhoods often have poor sanitation infrastructure and services and may experience frequent exposure to fecal contamination through a range of pathways. There are little data to prioritize strategies to decrease exposure to fecal contamination in these complex and highly contaminated environments, and public health priorities are rarely considered when planning urban sanitation investments. The SaniPath Study addresses this need by characterizing pathways of exposure to fecal contamination. Over a 16 month period, an in-depth, interdisciplinary exposure assessment was conducted in both public and private domains of four neighborhoods in Accra, Ghana. Microbiological analyses of environmental samples and behavioral data collection techniques were used to quantify fecal contamination in the environment and characterize the behaviors of adults and children associated with exposure to fecal contamination. Environmental samples (n = 1,855) were collected and analyzed for fecal indicators and enteric pathogens. A household survey with 800 respondents and over 500 hours of structured observation of young children were conducted. Approximately 25% of environmental samples were collected in conjunction with structured observations (n = 441 samples). The results of the study highlight widespread and often high levels of fecal contamination in both public and private domains and the food supply. The dominant fecal exposure pathway for young children in the household was through consumption of uncooked produce. The SaniPath Study provides critical information on exposure to fecal contamination in low-income, urban environments and ultimately can inform investments and policies to reduce these public health risks.
Abstract.Lack of adequate sanitation results in fecal contamination of the environment and poses a risk of disease transmission via multiple exposure pathways. To better understand how eight different sources contribute to overall exposure to fecal contamination, we quantified exposure through multiple pathways for children under 5 years old in four high-density, low-income, urban neighborhoods in Accra, Ghana. We collected more than 500 hours of structured observation of behaviors of 156 children, 800 household surveys, and 1,855 environmental samples. Data were analyzed using Bayesian models, estimating the environmental and behavioral factors associated with exposure to fecal contamination. These estimates were applied in exposure models simulating sequences of behaviors and transfers of fecal indicators. This approach allows us to identify the contribution of any sources of fecal contamination in the environment to child exposure and use dynamic fecal microbe transfer networks to track fecal indicators from the environment to oral ingestion. The contributions of different sources to exposure were categorized into four types (high/low by dose and frequency), as a basis for ranking pathways by the potential to reduce exposure. Although we observed variation in estimated exposure (108–1016 CFU/day for Escherichia coli) between different age groups and neighborhoods, the greatest contribution was consistently from food (contributing > 99.9% to total exposure). Hands played a pivotal role in fecal microbe transfer, linking environmental sources to oral ingestion. The fecal microbe transfer network constructed here provides a systematic approach to study the complex interaction between contaminated environment and human behavior on exposure to fecal contamination.
Public pay-per-use toilets are the only alternative to open defecation for a significant number of people in many low-income, urban neighbourhoods where insecure tenure, space constraints, and/or cost make private sanitation facilities unfeasible. This study explores public toilet use, characteristics of public toilet customers and possible improvements to public toilet facilities in four neighbourhoods in Accra, Ghana, the country with the highest reliance on shared sanitation facilities globally. Reliance on public toilets ranged considerably depending on neighbourhood affluence, but even some people living in compounds with a private toilet used a public toilet. The vast majority of users were adults. Few public toilet customers could foresee owning a household toilet in the coming year, mostly because of lack of space, and they voiced desires for more and cleaner public toilets with better provision of handwashing facilities. Improved accessibility and management of public toilets, along with facilities more suitable for children, could reduce open defecation.
Treatment of water at the household level offers a promising approach to combat the global burden of diarrheal diseases. In particular, chlorination of drinking water has been a widely promoted strategy due to persistence of residual chlorine after initial treatment. However, the degree to which chlorination can reduce microbial levels in a controlled setting (efficacy) or in a household setting (effectiveness) can vary as a function of chlorine characteristics, source water characteristics, and household conditions. To gain more understanding of these factors, we carried out an observational study within households in rural communities of northern coastal Ecuador. We found that the efficacy of chlorine treatment under controlled conditions was significantly better than its effectiveness when evaluated both by ability to meet microbiological safety standards and by log reductions. Water treated with chlorine achieved levels of microbial contamination considered safe for human consumption after 24 hours of storage in the household only 39 – 51% of the time, depending on chlorine treatment regimen. Chlorine treatment would not be considered protective against diarrheal disease according to WHO log reduction standards. Factors that explain the observed compromised effectiveness include: source water turbidity, source water baseline contamination levels, and in-home contamination. Water in 38% of the households that had low turbidity source water (< 10 NTU) met the safe water standard as compared with only 17% of the households that had high turbidity source water (> 10 NTU). A 10 MPN/100mL increase in baseline E. coli levels was associated with a 2.2% increase in failure to meet the E. colistandard. Higher mean microbial contamination levels in 54% of household samples in comparison to their matched controls, which is likely the result of in-home contamination during storage. Container characteristics (size of the container mouth) did not influence chlorine effectiveness. We found no significant differences between chlorine treatment regimens in ability to meet the safe water standards or in overall log reductions, although chlorine dosage did modify the effect of source conditions. These results underscore the importance of measuring both source water and household conditions to determine appropriate chlorine levels, as well as to evaluate the appropriateness of chlorine treatment and other point-of-use water quality improvement interventions.
ObjectiveThis study examined associations between household sanitation and enteric infection – including diarrhoeal‐specific outcomes – in children 0–2 years of age in a low‐income, dense urban neighbourhood.MethodsAs part of the MAL‐ED study, 230 children in a low‐income, urban, Indian neighbourhood provided stool specimens at 14–17 scheduled time points and during diarrhoeal episodes in the first 2 years of life that were analysed for bacterial, parasitic (protozoa and helminths) and viral pathogens. From interviews with caregivers in 100 households, the relationship between the presence (and discharge) of household sanitation facilities and any, pathogen‐specific, and diarrhoea‐specific enteric infection was tested through mixed‐effects Poisson regression models.ResultsFew study households (33%) reported having toilets, most of which (82%) discharged into open drains. Controlling for season and household socio‐economic status, the presence of a household toilet was associated with lower risks of enteric infection (RR: 0.91, 95% CI: 0.79–1.06), bacterial infection (RR: 0.87, 95% CI: 0.75–1.02) and protozoal infection (RR: 0.64, 95% CI: 0.39–1.04), although not statistically significant, but had no association with diarrhoea (RR: 1.00, 95% CI: 0.68–1.45) or viral infections (RR: 1.12, 95% CI: 0.79–1.60). Models also suggested that the relationship between household toilets discharging to drains and enteric infection risk may vary by season.ConclusionsThe presence of a household toilet was associated with lower risk of bacterial and protozoal enteric infections, but not diarrhoea or viral infections, suggesting the health effects of sanitation may be more accurately estimated using outcome measures that account for aetiologic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.