The bed nucleus of the stria terminalis (BST) and the medial amygdala (MeA) are anatomically connected sites necessary for chemosensory regulation of social behaviors in rodents. Prairie voles (Microtus ochrogaster) are a valuable model for studying the neural regulation of social behaviors because, unlike many other rodents, they are gregarious, pair bond after copulating, and are biparental. We herein describe sex and species differences in immunoreactivity for tyrosine hydroxylase (TH), the rate-limiting enzyme for catecholamine synthesis, in the BST and MeA. Virgin male prairie voles had a large number of TH-immunoreactive cells in areas analogous to the rat principal nucleus of the BST (pBST) and the posterodorsal medial amygdala (MeAPd). Virgin female prairie voles had far fewer TH-immunoreactive cells in these sites ( approximately 17% of the number of cells as males in the pBST, approximately 35% of the number of cells in the MeAPd). A few TH-immunoreactive cells were found in the BST of male and female hamsters and meadow voles, but not in rats. The MeApd also contained a few TH-immunoreactive cells in male and female hamsters and male meadow voles, but not rats. Castration greatly reduced the number of TH-immunoreactive cells in the male prairie vole pBST and MeAPd, an effect that could be reversed with testosterone. Furthermore, treating ovariectomized females with testosterone substantially increased TH-immunoreactive cells in both sites. Therefore, a species-specific sex difference in TH expression is found in a chemosensory pathway in prairie voles. Expression of TH in these sites is influenced by circulating gonadal hormones in adults, which may be related to changes in their display of social behaviors across the reproductive cycle.
Male prairie voles (Microtus ochrogaster) are a valuable model in which to study the neurobiology of sociality because, unlike most mammals, they pair bond after mating and display paternal behaviors. Research on the regulation of these social behaviors has highlighted dopamine (DA) neurotransmission in both pair bonding and parenting. We recently described large numbers of dopaminergic cells in the male prairie vole principal nucleus of the bed nucleus of the stria terminalis (pBST) and posterodorsal medial amygdala (MeApd), but such cells were very few in number or absent in the non-monogamous species we examined, including meadow voles. This suggests that DA cells in these sites may be important for sociosexual behaviors in male prairie voles. To gain some insight into the function of these DAergic neurons in male prairie voles, we examined expression of the immediate-early genes (IEGs) Fos and Egr-1 in TH-immunoreactive (TH-ir) cells of the pBST and MeApd after males interacted or not with one of several social stimuli. We found that IEGs were constitutively expressed in some TH-ir neurons under any social condition, and that IEG expression in these cells decreased after a 3.5-hr social isolation. Thirty-min mating bouts (but not 6- or 24-hr bouts) that included ejaculation elicited greater IEG expression in TH-ir cells than did non-ejaculatory mating, interactions with a familiar female sibling, or interactions with pups. Furthermore, Fos expression in TH-ir cells was positively correlated with the display of copulatory, but not parental, behaviors. These effects of mating were not found in other DA-rich sites of the forebrain (including the anteroventral periventricular preoptic area, periventricular anterior hypothalamus, zona incerta, and arcuate nucleus). Thus, activity in DAergic cells of the male prairie vole pBST and MeApd is influenced by their social environment, and may be particularly involved in mating and its consequences, including pair bonding.
The posterodorsal aspect of the medial amygdala (MePD) is sexually dimorphic in regional volume, rostrocaudal extent, and neuronal soma size in rats. These dimorphisms are maintained by circulating gonadal hormones, as castration of adult male rats reduces MePD measures, while testosterone treatment of females increases them. We now report that the MePD is also sexually dimorphic in volume, rostrocaudal extent, and somal area in BALB/c mice. Four weeks after castration of adult male mice, MePD regional volume and soma size are reduced, but rostrocaudal extent is not, compared to sham-castrated males. Treatment of adult ovariectomized females with an aromatized metabolite of testosterone, estradiol, for eight weeks increased MePD volume and soma size, but not rostrocaudal extent. To probe the possible role of afferents in the steroid-induced plasticity of the MePD, we examined the effect of removing the olfactory bulbs in gonadally intact males and in estrogen-treated females. Bulbectomy had no effect on MePD morphology with one exception: among gonadally intact males, neuronal soma size was slightly smaller in the right MePD of bulbectomized males compared to males with intact bulbs. These results indicate that the sexual dimorphism and hormone responsiveness of the MePD that has been extensively studied in rats is also present in mice, which offer genetic tools for future research. We detected little or no evidence that olfactory bulb afferents play a role in maintaining MePD morphology in adult mice.
Juveniles of many species engage in rough-and-tumble play behaviors, and these social encounters are important for the expression of typical social behaviors. Play is a highly motivated and rewarding behavior, which suggests that the mesocorticolimbic dopamine system is likely important for reinforcing the behavior. Indeed, systemic dopamine receptor antagonists decrease the expression of play behaviors, but the specific dopaminergic networks important for play are not known. In this study, we examined immediate-early gene expression in specific dopaminergic cell groups after juvenile male and female rats played or did not play. Subjects were housed with a same-sex sibling, and spontaneous play behavior (or lack thereof) was observed for 1 hr. Brains were harvested and immunohistochemistry was used to localize Fos and tyrosine hydroxylase. Cells expressing both proteins were counted in midbrain and forebrain dopaminergic cell groups. Females that played had more double-labeled cells in the ventral tegmental area (VTA) than females that did not play, but there was no effect of play on double-labeled cell counts in any brain region in males. Furthermore, many measures of play in females were positively correlated with the number of double-labeled cells in the VTA, including play duration and pin duration. Our results suggest that play in females likely induces dopamine release from mesocorticolimbic neurons to reinforce play behaviors. Our results also highlight a sex difference in the neural networks mediating play, thus emphasizing the importance of studying the neurobiology of play in both males and females.
The Women’s Health Initiative trials – in which more extreme adverse outcomes were observed in the medroxyprogesterone acetate (MPA) + conjugated equine estrogen (CEE) arm, as compared to the CEE only arm – suggest that the addition of MPA to estrogen treatment has undesirable consequences. An important question raised by these results is whether the adverse outcomes observed in the progestin arm can be attributed to effects that are unique to MPA or are common to all progestins. In this study we explored the potential for MPA and progesterone (P4) to differentially impact neuroendocrine function by comparing their effects on mRNA expression for the α4 subunit of GABAA receptors in the CA1 hippocampus of female rats. Prior research has shown that P4, acting through its reduced metabolite allopregnanolone (AP), can mediate α4 subunit expression, thereby altering GABAA receptor gated currents. By contrast, MPA competitively inhibits the enzymes necessary for the synthesis of AP. In this study, ovariectomized females were primed with estradiol benzoate and then treated with P4, MPA, or vehicle. Subjects were sacrificed 12 h or 24 h later and in situ hybridization was used to measure α4 mRNA in the CA1 hippocampus. At 12 h but not 24 h, α4 mRNA was reduced in the P4 group as compared to the MPA group, and as compared to the vehicle group. These results suggest that MPA, while progestational in terms of its effects in the uterus, is not a simple substitute for P4 in other systems. The relative impact of these two progestins on neuroendocrine function must be carefully explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.