a b s t r a c tMany estuaries worldwide are becoming more urbanised with heavier traffic in the waterways, requiring continuous channel deepening and larger ports, and increasing suspended sediment concentration (SSC). An example of a heavily impacted estuary where SSC levels are rising is the Ems Estuary, located between the Netherlands and Germany. In order to provide larger and larger ships access to three ports and a shipyard, the tidal channels in the Ems Estuary have been substantially deepened by dredging over the past decades. This has led to tidal amplification and hyper concentrated sediment conditions in the upstream tidal river. In the middle and outer reaches of the Ems Estuary, the tidal amplification is limited, and mechanisms responsible for increasing SSC are poorly understood. Most likely, channel and port deepening lead to larger SSC levels because of resulting enhanced siltation rates and therefore an increase in maintenance dredging. Additionally, channel deepening may increase up-estuary suspended sediment transport due to enhanced salinity-induced estuarine circulation.The effect of channel deepening and port construction on SSC levels is investigated using a numerical model of suspended sediment transport forced by tides, waves and salinity. The model satisfactorily reproduces observed water levels, velocity, sediment concentration and port deposition in the estuary, and therefore is subsequently applied to test the impact of channel deepening, historical dredging strategy and port construction on SSCs in the Estuary. These model scenarios suggest that: (1) channel deepening appears to be a main factor for enhancing the transport of sediments up-estuary, due to increased salinity-driven estuarine circulation; (2) sediment extraction strategies from the ports have a large impact on estuarine SSC; and (3) maintenance dredging and disposal influences the spatial distribution of SSC but has a limited effect on average SSC levels.
Estuarine suspended sediment transport models are typically calibrated against suspended sediment concentration data. These data typically cover a limited range of the actual suspended sediment concentration dynamics, constrained in either time or space. As a result of these data limitations, the available data can be reproduced with complex 3D transport models through multiple sets of model calibration parameters. These various model parameter sets influence the relative importance of transport processes such as settling, deposition, erosion, or mixing. As a result, multiple model parameter sets may reproduce sediment dynamics in tidal channels (where most data is typically collected) with the same degree of accuracy but simulate notably different sediment concentration patterns elsewhere (e.g. on the tidal flats). Different combinations of model input parameters leading to the same result are known as equifinality. The effect of equifinality on predictive model capabilities is investigated with a complex threedimensional sediment transport model of a turbid estuary which is subject to several human interventions. The effect of two human interventions (offshore disposal of dredged sediment and restoration of the tidal channel profile) was numerically examined with several equifinal model settings. The computed effect of these two human interventions was relatively weakly influenced by the model settings, strengthening confidence in the numerical model predictions.
The main objective of this chapter is to demonstrate developments in port maintenance techniques that have been intensively tested in major European ports. As regular port maintenance is highly expensive, port authorities are considering alternative strategies. Water Injection Dredging (WID) can be one of the most efficient alternatives. Using this dredging method, density currents near the bed are created by fluidizing fine-grained sediments. The fluidized sediment can leave the port channels and be transported away from the waterways via the natural force of gravity. WID actions can be successfully coupled with the tidal cycle for extra effectiveness. In addition, WID is combined with another strategy to reduce maintenance dredging: the nautical bottom approach, which enables the vessel to navigate through the WID-induced fluid mud layer. The nautical bottom approach uses the density or the yield stress of sediment to indicate the navigability after WID rather than the absolute depth to the sediment bed. Testing WID-based port maintenance requires thorough preparation. Over the years modeling and monitoring tools have been developed in order to test and optimize WID operations. In this chapter, the application of the recently developed tools is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.