Background
Childhood asthma prevalence and morbidity varies among Latinos in the United States, with Puerto Ricans having the highest and Mexicans the lowest.
Objective
To determine whether genetic ancestry is associated with the odds of asthma among Latinos, and secondarily whether genetic ancestry is associated with lung function among Latino children.
Methods
We analyzed 5,493 Latinos with and without asthma from three independent studies. For each participant we estimated the proportion of African, European, and Native American ancestry using genome-wide data. We tested whether genetic ancestry was associated with the presence of asthma and lung function among subjects with and without asthma. Odds ratios (OR) and effect sizes were assessed for every 20% increase in each ancestry.
Results
Native American ancestry was associated with lower odds of asthma (OR=0.72, 95% confidence interval [CI]: 0.66–0.78, p=8.0×10−15), while African ancestry was associated with higher odds of asthma (OR=1.40, 95%CI: 1.14–1.72, p=0.001). These associations were robust to adjustment for covariates related to early life exposures, air pollution and socioeconomic status. Among children with asthma, African ancestry was associated with lower lung function, including both pre- and post-bronchodilator measures of forced expiratory volume in the first second (−77±19 ml, p=5.8×10−5 and −83±19 ml, p=1.1×10−5, respectively) and forced vital capacity (−100±21 ml, p=2.7×10−6 and −107±22 ml, p=1.0×10−6, respectively).
Conclusion
Differences in the proportions of genetic ancestry can partially explain disparities in asthma susceptibility and lung function among Latinos.
Minor improvements in algorithms can be observed with the inclusion of ethnicity and more CYP2C9 and VKORC1 SNPs as variables. Major improvements will likely require the identification of new gene associations with warfarin dosing.
Background
Asthma is a complex disease with both genetic and environmental causes. Genome-wide association studies of asthma have mostly involved European populations and replication of positive associations has been inconsistent.
Objective
To identify asthma-associated genes in a large Latino population with genome-wide association analysis and admixture mapping.
Methods
Latino children with asthma (n = 1,893) and healthy controls (n = 1,881) were recruited from five sites in the United States: Puerto Rico, New York, Chicago, Houston, and the San Francisco Bay Area. Subjects were genotyped on an Affymetrix World Array IV chip. We performed genome-wide association and admixture mapping to identify asthma-associated loci.
Results
We identified a significant association between ancestry and asthma at 6p21 (lowest p-value: rs2523924, p < 5 × 10−6). This association replicates in a meta-analysis of the EVE Asthma Consortium (p = 0.01). Fine mapping of the region in this study and the EVE Asthma Consortium suggests an association between PSORS1C1 and asthma. We confirmed the strong allelic association between the 17q21 asthma in Latinos (IKZF3, lowest p-value: rs90792, OR: 0.67, 95% CI 0.61 – 0.75, p = 6 × 10−13) and replicated associations in several genes that had previously been associated with asthma in genome-wide association studies.
Conclusions
Admixture mapping and genome-wide association are complementary techniques that provide evidence for multiple asthma-associated loci in Latinos. Admixture mapping identifies a novel locus on 6p21 that replicates in a meta-analysis of several Latino populations, while genome-wide association confirms the previously identified locus on 17q21.
Rationale
The primary rescue medication to treat acute asthma exacerbation is short-acting β2- adrenergic receptor (β2AR) agonists (SABAs), however there is variation in how well an individual responds to treatment. Although these differences may be due to environmental factors, there is mounting evidence for a genetic contribution to variability in bronchodilator drug response (BDR).
Methods
We performed a genome-wide association study (GWAS) for BDR in 1,782 Latino children with asthma using standard linear regression, adjusting for genetic ancestry and ethnicity, and performed replication studies in an additional 531 Latinos. We also performed admixture mapping across the genome by testing for an association between local European, African, and Native American ancestry and BDR, adjusting for genomic ancestry and ethnicity.
Results
We identified seven genetic variants associated with BDR at a genome-wide significant threshold (p<5×10−8), all of which had frequencies below 5%. Furthermore, we observed an excess of small p-values driven by rare variants (frequency < 5%), and by variants in the proximity of solute carrier (SLC) genes. Admixture mapping identified five significant peaks; fine mapping within these peaks identified two rare variants in SLC22A15 as being associated with increased BDR in Mexicans. Quantitative PCR and immunohistochemistry identified SLC22A15 as being expressed in the lung and bronchial epithelial cells.
Conclusion
Our results suggest that rare variation contributes to individual differences in response to albuterol in Latinos, notably in solute carrier genes that include membrane transport proteins involved in the transport of endogenous metabolites and xenobiotics. Resequencing in larger, multi-ethnic population samples and additional functional studies are required to further understand the role of rare variation in BDR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.