Harvested by advanced technical systems honed over decades of research and development, wind energy has become a mainstream energy resource. However, continued innovation is needed to realize the potential of wind to serve the global demand for clean energy. Here, we outline three interdependent, cross-disciplinary grand challenges underpinning this research endeavor. The first is the need for a deeper understanding of the physics of atmospheric flow in the critical zone of plant operation. The second involves science and engineering of the largest dynamic, rotating machines in the world. The third encompasses optimization and control of fleets of wind plants working synergistically within the electricity grid. Addressing these challenges could enable wind power to provide as much as half of our global electricity needs and perhaps beyond.
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov.NREL prints on paper that contains recycled content.
Recent research has demonstrated exciting potential for wind plant control systems to improve the cost of energy of wind plants. Wind plant controls seek to improve global wind plant performance over control systems in which each turbine optimizes only its individual performance by accounting for the way wind turbines interact through their wakes. Although these technologies can be applied to existing wind plants, it is probable that the maximum benefit would be derived by designing wind plants with these capabilities in mind. In this paper, we use system engineering approaches to perform coupled wind plant controls and position layout optimizations of a model wind plant. Using several cost metrics, we compare the results of this optimization to the original plant and to plants in which the control or layout is optimized separately or sequentially. Results demonstrate that the benefit of this coupled optimization can be substantial, but it depends on the particular constraints of the optimization.
Abstract. Wake steering is a form of wind farm control in which turbines use
yaw offsets to affect wakes in order to yield an increase in total energy
production. In this first phase of a study of wake steering at a commercial
wind farm, two turbines implement a schedule of offsets. Results exploring
the observed performance of wake steering are presented and some
first lessons learned. For two closely spaced turbines, an approximate
14 % increase in energy was measured on the downstream turbine over a
10∘ sector, with a 4 % increase in energy production of the
combined upstream–downstream turbine pair. Finally, the influence of
atmospheric stability over the results is explored.
This report describes two wind turbine models developed within the second work package (WP2) of IEA Wind Task 37 on Wind Energy Systems Engineering: Integrated RD&D. The wind turbine models can be used as references for future research projects on wind energy, representing a modern land-based wind turbine and a latest generation offshore wind turbine. The land-based design is a class IIIA geared configuration with a rated electrical power of 3.4-MW, a rotor diameter of 130 m, and a hub height of 110 m. The offshore design is a class IA configuration with a rated electrical power of 10.0 MW, a rotor diameter of 198 m, and a hub height of 119 m. The offshore turbine employs a direct-drive generator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.