Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) causes indirect systemic inflammation through unknown pathways. MWCNTs translocate only minimally from the lungs into the systemic circulation, suggesting that extrapulmonary toxicity may be caused indirectly by lung-derived factors entering the circulation. To assess a role for MWCNT-induced circulating factors in driving neuroinflammatory outcomes, mice were acutely exposed to MWCNTs (10 or 40 μg/mouse) via oropharyngeal aspiration. At 4 h after MWCNT exposure, broad disruption of the blood-brain barrier (BBB) was observed across the capillary bed with the small molecule fluorescein, concomitant with reactive astrocytosis. However, pronounced BBB permeation was noted, with frank albumin leakage around larger vessels (>10 μm), overlain by a dose-dependent astroglial scar-like formation and recruitment of phagocytic microglia. As affirmed by elevated inflammatory marker transcription, MWCNT-induced BBB disruption and neuroinflammation were abrogated by pretreatment with the rho kinase inhibitor fasudil. Serum from MWCNT-exposed mice induced expression of adhesion molecules in primary murine cerebrovascular endothelial cells and, in a wound-healing in vitro assay, impaired cell motility and cytokinesis. Serum thrombospondin-1 level was significantly increased after MWCNT exposure, and mice lacking the endogenous receptor CD36 were protected from the neuroinflammatory and BBB permeability effects of MWCNTs. In conclusion, acute pulmonary exposure to MWCNTs causes neuroinflammatory responses that are dependent on the disruption of BBB integrity.nanoparticle | blood-brain barrier | microglia | thrombospondin-1 | multiwalled carbon nanotube
Members of the Navajo Nation, who possess a high prevalence of cardiometabolic disease, reside near hundreds of local abandoned uranium mines (AUM), which contribute uranium, arsenic and other metals to the soil, water and air. We recently reported that hypertension is associated with mine waste exposures in this population. Inflammation is a major player in the development of numerous vascular ailments. Our previous work establishing that specific transcriptional responses of cultured endothelial cells treated with human serum can reveal relative circulating inflammatory potential in a manner responsive to pollutant exposures, providing a model to assess responses associated with exposure to these waste materials in this population. To investigate a potential link between exposures to AUM and serum inflammatory potential in affected communities, primary human coronary artery endothelial cells were treated for 4 h with serum provided by Navajo study participants (n = 145). Endothelial transcriptional responses of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and chemokine ligand 2 (CCL2) were measured. These transcriptional responses were then linked to AUM exposure metrics, including surface area-weighted AUM proximity and estimated oral intake of metals. AUM proximity strongly predicted endothelial transcriptional responses to serum including CCL2, VCAM-1 and ICAM-1 (P < 0.0001 for each), whereas annual water intakes of arsenic and uranium did not, even after controlling for all major effect modifiers. Inflammatory potential associated with proximity to AUMs, but not oral intake of specific metals, additionally suggests a role for inhalation exposure as a contributor to cardiovascular disease.
Aflatoxin B1 (AFB1) is a potent carcinogen that causes growth stunting, immunosuppression and liver cancer in multiple species. The recent trend of replacing fishmeal with plant-based proteins in fish feed has amplified the AFB1 exposure risk in farm-raised fish. NovaSil (NS), a calcium montmorillonite clay, has previously been shown to reduce AFB1 bioavailability safely and efficaciously in several mammalian species. This study was designed to: (1) evaluate AFB1 impact on cultured red drum, Sciaenops ocellatus, over the course of seven weeks; and (2) assess NS supplementation as a strategy to prevent aflatoxicosis. Fish were fed diets containing 0, 0.1, 0.25, 0.5, 1, 2, 3, or 5 ppm AFB1. Two additional treatment groups were fed either 5 ppm AFB1 + 1% NS or 5 ppm AFB1 + 2% NS. Aflatoxin B1 negatively impacted red drum weight gain, survival, feed efficiency, serum lysozyme concentration, hepatosomatic index (HSI), whole-body lipid levels, liver histopathological scoring, as well as trypsin inhibition. NovaSil inclusion in AFB1-contaminated diets improved weight gain, feed efficiency, serum lysozyme concentration, muscle somatic index, and intraperitoneal fat ratios compared to AFB1-treated fish. Although not significant, NS reduced AFB1-induced histopathological changes in the liver and decreased Proliferating Cell Nuclear Antigen (PCNA) staining. Importantly, NS supplementation improved overall health of AFB1-exposed red drum.
Ambient ozone (O3) levels are associated with cardiovascular morbidity and mortality, but the underlying pathophysiological mechanisms driving extrapulmonary toxicity remain unclear. This study examined the coronary vascular bed of rats in terms of constrictive and dilatory responses to known agonists following a single O3 inhalation exposure. In addition, serum from exposed rats was used in ex vivo preparations to examine whether bioactivity and toxic effects of inhaled O3 could be conveyed to extrapulmonary systems via the circulation. We found that 24 h following inhalation of 1 ppm O3, isolated coronary vessels exhibited greater basal tone and constricted to a greater degree to serotonin stimulation. Vasodilation to acetylcholine (ACh) was markedly diminished in coronary arteries from O3-exposed rats, compared with filtered air-exposed controls. Dilation to ACh was restored by combined superoxide dismutase and catalase treatment, and also by NADPH oxidase inhibition. When dilute (10%) serum from exposed rats was perfused into the lumen of coronary arteries from unexposed, naïve rats, the O3-induced reduction in vasodilatory response to ACh was partially recapitulated. Furthermore, following O3 inhalation, serum exhibited a nitric oxide scavenging capacity, which may partially explain blunted ACh-mediated vasodilatory responses. Thus, bioactivity from inhalation exposures may be due to compositional changes of the circulation. These studies shed light on possible mechanisms of action that may explain O3-associated cardiac morbidity and mortality in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.