Casein kinase I (CKI) is an essential component of the biological clock, phosphorylating PER proteins, and in doing so regulating their turnover and nuclear entry in oscillator cells of the suprachiasmatic nucleus (SCN). Although hereditary decreases in PER phosphorylation have been well characterized, little is known about the consequences of acute enzyme inhibition by pharmacological means. A novel reagent, 4-[3-cyclohexyl-5-(4-fluoro-phenyl)-3H-imidazol-4-yl]-pyrimidin-2-ylamine (PF-670462), proved to be both a potent (IC 50 ϭ 7.7 Ϯ 2.2 nM) and selective (Ͼ30-fold with respect to 42 additional kinases) inhibitor of CKI in isolated enzyme preparations; in transfected whole cell assays, it caused a concentrationrelated redistribution of nuclear versus cytosolic PER. When tested in free-running animals, 50 mg/kg s.c. PF-670462 produced robust phase delays when dosed at circadian time (CT)9 (Ϫ1.97 Ϯ 0.17 h). Entrained rats dosed in normal light-dark (LD) and then released to constant darkness also experienced phase delays that were dose-and time of dosing-dependent. PF-670462 yielded only phase delays across the circadian cycle with the most sensitive time at CT12 when PER levels are near their peak in the SCN. Most importantly, these druginduced phase delays persisted in animals entrained and maintained in LD throughout the entire experiment; re-entrainment to the prevailing LD required days in contrast to the rapid elimination of the drug (t 1/2 ϭ 0.46 Ϯ 0.04 h). Together, these results suggest that inhibition of CKI yields a perturbation of oscillator function that forestalls light as a zeitgeber, and they demonstrate that pharmacological tools such as PF-670462 may yield valuable insight into clock function.Circadian behavior is mediated by a timed sequence of intracellular events, genomic in nature, occurring in mammals within so-called pacemaker cells of the suprachiasmatic nucleus (SCN) (Antle and Silver, 2005). Here, rhythmicity relies on a common theme of precisely regulated gene transcription and translation as a means to perpetuate cycling, and in doing so, to dictate the timing of downstream events (Reppert and Weaver, 2001; for review, see Schibler, 2006, among others). Clock-related proteins rise and fall in concentration as a consequence of nuclear and cytosolic feedback loops, adjusted daily to maintain reproducible cycling timed at roughly 24-h intervals. Light is the primary zeitgeber, or "time-giver", in this process, and its actions on loop dynamics are thought to comprise the most important external influence on pacemaker function.In its simplest conception, the oscillations of the clock can run using four genes, Period (Per1, Per2) and Cryptochrome (Cry1, Cry2), that are activated in early circadian day by heterodimeric complexes of CLOCK and BMAL1 (Griffin et al., 1999;Kume et al., 1999;Cermakian and Boivin, 2003). Translated PER partners in the cytoplasm with CRY, the resultant heterodimer, readily gaining nuclear entry and opposing activation by Clock and BMAL1. A feedback loop is...
The circadian clock links our daily cycles of sleep and activity to the external environment. Deregulation of the clock is implicated in a number of human disorders, including depression, seasonal affective disorder, and metabolic disorders. Casein kinase 1 epsilon (CK1) and casein kinase 1 delta (CK1␦) are closely related Ser-Thr protein kinases that serve as key clock regulators as demonstrated by mammalian mutations in each that dramatically alter the circadian period. Therefore, inhibitors of CK1␦/ may have utility in treating circadian disorders. Although we previously demonstrated that a pan-CK1␦/ inhibitor, 4-[3-cyclohexyl-5-(4-fluoro-phenyl)-3H-imidazol-4-yl]-pyrimidin-2-ylamine (PF-670462), causes a significant phase delay in animal models of circadian rhythm, it remains unclear whether one of the kinases has a predominant role in regulating the circadian clock. To test this, we have characterized 3-(3-, a novel and potent inhibitor of CK1 (IC 50 ϭ 32 nM) with greater than 20-fold selectivity over CK1␦. PF-4800567 completely blocks CK1-mediated PER3 nuclear localization and PER2 degradation. In cycling Rat1 fibroblasts and a mouse model of circadian rhythm, however, PF-4800567 has only a minimal effect on the circadian clock at concentrations substantially over its CK1 IC 50 . This is in contrast to the pan-CK1␦/ inhibitor PF-670462 that robustly alters the circadian clock under similar conditions. These data indicate that CK1 is not the predominant mediator of circadian timing relative to CK1␦. PF-4800567 should prove useful in probing unique roles between these two kinases in multiple signaling pathways.All living things, from fungi to humans, have regular cycles aligning them with the daily events in their environment. These cycles, known as circadian rhythms, are controlled in mammals by the master clock located in the suprachiasmatic nucleus of the hypothalamus (Antle and Silver, 2005;Gallego and Virshup, 2007). At the cellular level, the molecular events behind clock cycling are described by the regular increase and decrease in mRNAs and proteins that define feedback loops, resulting in approximately 24-h cycles. The suprachiasmatic nucleus is primarily regulated, or entrained, directly by light via the retinohypothalamic tract. The cycling outputs of the suprachiasmatic nucleus, not fully identified, regulate multiple downstream rhythms, such as those in sleep and awakening, body temperature, and hormone secretion (Schibler et al., 2003;Ko and Takahashi, 2006). As anyone who has experienced jet lag knows, misalignment of the internal clock with the external environment profoundly affects well being. Furthermore, diseases, such as depression, seasonal affective disorder, and metaArticle, publication date, and citation information can be found at
Innovative tools are urgently needed to accelerate the evaluation and subsequent approval of novel treatments that may slow, halt, or reverse the relentless progression of Parkinson disease (PD). Therapies that intervene early in the disease continuum are a priority for the many candidates in the drug development pipeline. There is a paucity of sensitive and objective, yet clinically interpretable, measures that can capture meaningful aspects of the disease. This poses a major challenge for the development of new therapies and is compounded by the considerable heterogeneity in clinical manifestations across patients and the fluctuating nature of many signs and symptoms of PD. Digital health technologies (DHT), such as smartphone applications, wearable sensors, and digital diaries, have the potential to address many of these gaps by enabling the objective, remote, and frequent measurement of PD signs and symptoms in natural living environments. The current climate of the COVID-19 pandemic creates a heightened sense of urgency for effective implementation of such strategies. In order for these technologies to be adopted in drug development studies, a regulatory-aligned consensus on best practices in implementing appropriate technologies, including the collection, processing, and interpretation of digital sensor data, is required. A growing number of collaborative initiatives are being launched to identify effective ways to advance the use of DHT in PD clinical trials. The Critical Path for Parkinson’s Consortium of the Critical Path Institute is highlighted as a case example where stakeholders collectively engaged regulatory agencies on the effective use of DHT in PD clinical trials. Global regulatory agencies, including the US Food and Drug Administration and the European Medicines Agency, are encouraging the efficiencies of data-driven engagements through multistakeholder consortia. To this end, we review how the advancement of DHT can be most effectively achieved by aligning knowledge, expertise, and data sharing in ways that maximize efficiencies.
5-Hydroxytryptamine (5-HT) 4 receptor agonists reportedly stimulate brain acetylcholine (ACh) release, a property that might provide a new pharmacological approach for treating cognitive deficits associated with Alzheimer's disease. The purpose of this study was to compare the binding affinities, functional activities, and effects on neuropharmacological responses associated with cognition of two highly selective 5-HT 4 receptor agonists, prucalopride and 6,7-dihydro-4-hydroxy-7-isopropyl-6-oxo-N-[3-(piperidin-1-yl)propyl]thieno[2,3-b]pyridine-5-carboxamide (PRX-03140). In vitro, prucalopride and PRX-03140 bound to native rat brain 5-HT 4 receptors with K i values of 30 nM and 110 nM, respectively, and increased cAMP production in human embryonic kidney-293 cells expressing recombinant rat 5-HT 4 receptors. In vivo receptor occupancy studies established that prucalopride and PRX-03140 were able to penetrate the brain and bound to 5-HT 4 receptors in rat brain, achieving 50% receptor occupancy at free brain exposures of 330 nM and 130 nM, respectively. Rat microdialysis studies revealed that prucalopride maximally increased ACh and histamine levels in the prefrontal cortex at 5 and 10 mg/kg, whereas PRX-03140 significantly increased cortical histamine levels at 50 mg/kg, failing to affect ACh release at doses lower than 150 mg/kg. In combination studies, donepezil-induced increases in cortical ACh levels were potentiated by prucalopride and PRX-03140. Electrophysiological studies in rats demonstrated that both compounds increased the power of brainstem-stimulated hippocampal oscillations at 5.6 mg/kg. These findings show for the first time that the 5-HT 4 receptor agonists prucalopride and PRX-03140 can increase cortical ACh and histamine levels, augment donepezil-induced ACh increases, and increase stimulated-hippocampal power, all neuropharmacological parameters consistent with potential positive effects on cognitive processes.
β-Secretase 1 (BACE-1) is an attractive therapeutic target for the treatment and prevention of Alzheimer's disease (AD). Herein, we describe the discovery of a novel class of BACE-1 inhibitors represented by sulfamide 14g, using a medicinal chemistry strategy to optimize central nervous system (CNS) penetration by minimizing hydrogen bond donors (HBDs) and reducing P-glycoprotein (P-gp) mediated efflux. We have also taken advantage of the combination of structure based drug design (SBDD) to guide the optimization of the sulfamide analogues and the in silico tool WaterMap to explain the observed SAR. Compound 14g is a potent inhibitor of BACE-1 with excellent permeability and a moderate P-gp liability. Administration of 14g to mice produced a significant, dose-dependent reduction in central Aβ(X-40) levels at a free drug exposure equivalent to the whole cell IC(50) (100 nM). Furthermore, studies of the P-gp knockout mouse provided evidence that efflux transporters affected the amount of Aβ lowering versus that observed in wild-type (WT) mouse at an equivalent dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.