Achieving food security in a context of environmental sustainability is one of the main challenges of the XXI century. Two competing strategies to achieve this goal are the use of genetically modified plants and the use of plant growth promoting microorganisms (PGPMs). However, few studies assess the response of genetically modified plants to PGPMs. The aim of this study was to compare the response of over-expressing the vacuolar H
+
-PPase (AVP) and wild-type rice types to the endophytic fungus;
Piriformospora indica
.
Oryza sativa
plants (WT and AVP) were inoculated with
P. indica
and 30 days later, morphological, ecophysiological and bioenergetic parameters, and nutrient content were assessed. AVP and WT plant heights were strongly influenced by inoculation with
P. indica
, which also promoted increases in fresh and dry matter of shoot in both genotypes. This may be related with the stimulatory effect of
P. indica
on ecophysiological parameters, especially photosynthetic rate, stomatal conductance, intrinsic water use efficiency and carboxylation efficiency. However, there were differences between the genotypes concerning the physiological mechanisms leading to biomass increment. In WT plants, inoculation with
P. indica
stimulated all H
+
pumps. However, in inoculated AVP plants, H
+
-PPase was stimulated, but P- and V-ATPases were inhibited. Fungal inoculation enhanced nutrient uptake in both shoots and roots of WT and AVP plants, compared to uninoculated plants; but among inoculated genotypes, the nutrient uptake was lower in AVP than in WT plants. These results clearly demonstrate that the symbiosis between
P. indica
and AVP plants did not benefit those plants, which may be related to the inefficient colonization of this fungus on the transgenic plants, demonstrating an incompatibility of this symbiosis, which needs to be further studied.
Despite the negative impacts of increased ultraviolet radiation intensity on plants, these organisms continue to grow and produce under the increased environmental UV levels. We hypothesized that ambient UV intensity can generate acclimations in plant growth, leaf morphology, and photochemical functioning in modern genotypes of Coffea arabica and C. canephora. Coffee plants were cultivated for ca. six months in a mini greenhouse under either near ambient (UVam) or reduced (UVre) ultraviolet regimes. At the plant scale, C. canephora was substantially more impacted by UVam when compared to C. arabica, investing more carbon in all juvenile plant components than under UVre. When subjected to UVam, both species showed anatomic adjustments at the leaf scale, such as increases in stomatal density in C. canephora, at the abaxial and adaxial cuticles in both species, and abaxial epidermal thickening in C. arabica, although without apparent impact on the thickness of palisade and spongy parenchyma. Surprisingly, C. arabica showed more efficient energy dissipation mechanism under UVam than C. canephora. UVam promoted elevated protective carotenoid content and a greater use of energy through photochemistry in both species, as reflected in the photochemical quenching increases. This was associated with an altered chlorophyll a/b ratio (significantly only in C. arabica) that likely promoted a greater capability to light energy capture. Therefore, UV levels promoted different modifications between the two Coffea sp. regarding plant biomass production and leaf morphology, including a few photochemical differences between species, suggesting that modifications at plant and leaf scale acted as an acclimation response to actual UV intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.