Culture of three-dimensional (3D) constructs in hypoxic conditions (1-5% O) has been shown to increase production of extracellular matrix components in primary intervertebral disc (IVD) cells and drive chondrogenesis of human mesenchymal stem cells (hMSCs). Growing evidence suggests that two-dimensional (2D) expansion under hypoxic conditions may have an even greater influence on chondrogenesis in MSCs. This study aims to determine the effects of hypoxia during 2D expansion and subsequent 3D culture on the in vitro maturation of tissue-engineered IVDs (TE-IVDs) made with hMSCs, using a previously developed TE-IVD system. hMSCs were expanded in either hypoxic (5% O) or normoxic (21% O) conditions before construction of TE-IVDs. Discs were cultured in 3D in either hypoxic or normoxic conditions to create four experimental groups. Discs made from MSCs expanded in hypoxia were up to 141% stiffer than those made with normoxia-expanded MSCs. Similar patterns were seen in all mechanical properties. Increases in glycosaminoglycan content and collagen content in the nucleus pulposus (NP) were associated with 3D hypoxic culture. A boundary region between the manufactured fibrosus and NP regions developed by 2 weeks and mimicked the organization of the native disc. Hypoxic conditions in both 2D expansion and subsequent 3D culture improved the maturation of TE-IVDs made with hMSCs.
Study design
Animal experimental study
Objective
To evaluate a novel quantitative imaging technique for assessing disc degeneration.
Summary of Background Data
T2-relaxation time (T2-RT) measurements have been used to quantitatively assess disc degeneration. T2 values correlate with the water content of inter vertebral disc tissue and thereby allow for the indirect measurement of nucleus pulposus (NP) hydration.
Methods
We developed an algorithm to subtract out MRI voxels not representing NP tissue based on T2-RT values. Filtered NP voxels were used to measure nuclear size by their amount and nuclear hydration by their mean T2-RT. This technique was applied to 24 rat-tail intervertebral discs’ (IVDs), which had been punctured with an 18-gauge needle according to different techniques to induce varying degrees of degeneration. NP voxel count and average T2-RT were used as parameters to assess the degeneration process at 1 and 3 months post puncture. NP voxel counts were evaluated against X-ray disc height measurements and qualitative MRI studies based on the Pfirrmann grading system.
Tails were collected for histology to correlate NP voxel counts to histological disc degeneration grades and to NP cross-sectional area measurements.
Results
NP voxel count measurements showed strong correlations to qualitative MRI analyses (R2=0.79, p<0.0001), histological degeneration grades (R2=0.902, p<0.0001) and histological NP cross-sectional area measurements (R2=0.887, p<0.0001).
In contrast to NP voxel counts, the mean T2-RT for each punctured group remained constant between months 1 and 3. The mean T2-RTs for the punctured groups did not show a statistically significant difference from those of healthy IVDs (63.55ms ±5.88ms month 1 and 62.61ms ±5.02ms) at either time point.
Conclusion
The NP voxel count proved to be a valid parameter to quantitatively assess disc degeneration in a needle puncture model. The mean NP T2-RT does not change significantly in needle-puncture induced degenerated IVDs. IVDs can be segmented into different tissue components according to their innate T2-RT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.