In contrast to hematological malignancies, meaningful improvements in survival statistics for patients with malignant brain tumors have not been realized in >40 years of clinical research. Clearly, a new medical approach to brain cancers is needed. Recent research has led to a new concept that needs to destroy all cancer subclones to control the cancer progression. However, this new concept fails to distinguish the difference between dominating subclones and dormant subclones. Here, we address the issue of clonal switch and emphasize that there may be one or more than one dominant clones within the tumor mass at any time. Destructing one dominant clone triggers activating other dormant subclones to become dominating subclones, causing cancer progress and post-treatment cancer recurrence. We postulate the concept of subclonal switchboard signaling and the pathway that involved in this process. In the context of stem cell and development, there is a parallel with the concept of quiescent/dormant cancer stem cells (CSC) and their progeny, the differentiated cancer cells; these 2 populations communicate and co-exist. The mechanism with which determines to extend self-renewal and expansion of CSC is needed to elucidate. We suggest eliminating the "dominating subclonal switchboard signals" that shift the dormant subclones to dominating subclones as a new strategy.
Increased evidence shows that normal stem cells may contribute to cancer development and progression by acting as cancer-initiating cells through their interactions with abnormal environmental elements. We postulate that normal stem cells and cancer stem cells (CSC) possess similar mechanisms of self-renewal and differentiation. CSC can be the key to the elaboration of anti-cancer-based therapy. In this article, we focus on a controversial new theme relating to CSC. Tumorigenesis may have a critical stage characterized as a “therapeutic window”, which can be identified by association of molecular, biochemical and biological events. Identifying such a stage can allow the production of more effective therapies (e.g. manipulated stem cells) to treat several cancers. More importantly, confirming the existence of a similar therapeutic window during the conversion of normal stem cells to malignant CSC may lead to targeted therapy specifically against CSC. This conversion information may be derived from investigating the biological behaviour of both normal stem cells and cancerous stem cells. Currently, there is little knowledge about the cellular and molecular mechanisms that govern the initiation and maintenance of CSC. Studies on co-evolution and interdependence of cancer with normal tissues may lead to a useful treatment paradigm of cancer. The crosstalk between normal stem cells and cancer formation may converge developmental stages of different types of stem cells (e.g. normal stem cells, CSC and embryonic stem cells). The differential studies of the convergence may result in novel therapies for treating cancers
Rising concerns about the short- and long-term detrimental consequences of administration of conventional pharmacopeia are fueling the search for alternative, complementary, personalized, and comprehensive approaches to human healthcare. Qigong, a form of Traditional Chinese Medicine, represents a viable alternative approach. Here, we started with the practical, philosophical, and psychological background of Ki (in Japanese) or Qi (in Chinese) and their relationship to Qigong theory and clinical application. Noting the drawbacks of the current state of Qigong clinic, herein we propose that to manage the unique aspects of the Eastern ‘non-linearity’ and ‘holistic’ approach, it needs to be integrated with the Western “linearity” “one-direction” approach. This is done through developing the concepts of “Qigong breathing signatures,” which can define our life breathing patterns associated with diseases using machine learning technology. We predict that this can be achieved by establishing an artificial intelligence (AI)-Medicine training camp of databases, which will integrate Qigong-like breathing patterns with different pathologies unique to individuals. Such an integrated connection will allow the AI-Medicine algorithm to identify breathing patterns and guide medical intervention. This unique view of potentially connecting Eastern Medicine and Western Technology can further add a novel insight to our current understanding of both Western and Eastern medicine, thereby establishing a vitality score index (VSI) that can predict the outcomes of lifestyle behaviors and medical conditions.
Cancer epidemic led to worldwide to search for a new “game changer” concept to govern cancer research and cancer treatment. Western medicine-based cancer research has been extending the impasse without resolution in sigh for improving survival of patients with solid malignant tumors in the last four decades due to heterogeneity in cancer tissues. Such a deadlock charts a course to learn lessons from the developing countries, directly or indirectly to complement the exhausted Western medicine. We propose a new concept of “Cancer niche as a garbage disposal machine” with implications of traditional Chinese medicine-mediated restoration of normal balance between body and disease to bring the fight against cancer under control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.