Listeria monocytogenes is a significant food-borne human and veterinary pathogen. Contaminated silage commonly leads to disease in livestock, but the pervasive nature of the bacterium can make it difficult to identify the source of infection. An investigation of bovine listeriosis that occurred on a Pacific Northwest dairy farm ("farm A") revealed that the clinical strain was closely related to fecal strains from asymptomatic cows, and that farm environment was heavily contaminated with a diversity of L. monocytogenes strains. In addition, the farm A clinical strain was closely related to clinical and environmental strains obtained 1 year prior from a second Northwest dairy farm ("farm B"). To investigate the source(s) of contamination on farm A, environmental samples were collected from farm A at two time points. Pulsed-field gel electrophoresis characterization of 538 isolates obtained from that farm identified 57 different AscI pulsovars. Fecal isolates obtained from individual cows were the most genetically diverse, with up to 94% of fecal samples containing more than one pulsovar. The maximum numbers of pulsovars and serotypes isolated from a fecal sample of one cow were 6 and 4, respectively. Serotype 1/2a was isolated most frequently at both time points. Microarray genotyping of bovine listeriosis, fecal, and silage strains from both farms identified four probes that differentiated listeriosis strains from environmental strains; however, no probe was common to both bovine listeriosis strains.
Identifying the reservoirs of a pathogen is vital for control of sporadic disease and epidemics. Listeria monocytogenes is a zoonotic foodborne pathogen that is responsible for 28% of food-related deaths in the United States annually, as well as a major cause of massive product recalls worldwide. To examine the role of the dairy farm as a potential source or reservoir for L. monocytogenes subtypes shown to cause human listeriosis, we compared the pulsed-field gel electrophoresis (PFGE) restriction enzyme digestion profiles of L. monocytogenes dairy farm-associated strains (milk, environmental, and bovine) to human sporadic and epidemic disease strains. Twenty-three percent of human sporadic strains had PFGE patterns identical to that of farm isolate(s). Additionally, three farm environmental strains and one human sporadic strain had a PFGE pattern identical to a strain of L. monocytogenes responsible for the 1985 California epidemic. These data indicate that this epidemic strain continues to cause sporadic human illness and has a potential dairy farm as a reservoir.
In this article, an experiential learning activity is described in which 19 university undergraduates made experimental observations on each other to explore physiological adaptations to high altitude. Following 2 wk of didactic sessions and baseline data collection at sea level, the group ascended to a research station at 12,500-ft elevation. Here, teams of three to four students measured the maximal rate of oxygen uptake, cognitive function, hand and foot volume changes, reticulocyte count and hematocrit, urinary pH and 24-h urine volume, athletic performance, and nocturnal blood oxygen saturation. Their data allowed the students to quantify the effect of altitude on the oxygen cascade and to demonstrate the following altitude-related changes: 1) impaired performance on selected cognitive function tests, 2) mild peripheral edema, 3) rapid reticulocytosis, 4) urinary alkalinization and diuresis, 5) impaired aerobic but not anaerobic exercise performance, 6) inverse relationship between blood oxygen saturation and resting heart rate, and 7) regular periodic nocturnal oxygen desaturation events accompanied by heart rate accelerations. The students learned and applied basic statistical techniques to analyze their data, and each team summarized its results in the format of a scientific paper. The students were uniformly enthusiastic about the use of self-directed experimentation to explore the physiology of altitude adaptation and felt that they learned more from this course format than a control group of students felt that they learned from a physiology course taught by the same instructor in the standard classroom/laboratory format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.