The modification of synaptic strength produced by long-term potentiation (LTP) is widely thought to underlie memory storage. Indeed, given that hippocampal pyramidal neurons have > 10,000 independently modifiable synapses, the potential for information storage by synaptic modification is enormous. However, recent work suggests that CREB-mediated global changes in neuronal excitability also play a critical role in memory formation. Because these global changes have a modest capacity for information storage compared with that of synaptic plasticity, their importance for memory function has been unclear. Here we review the newly emerging evidence for CREB-dependent control of excitability and discuss two possible mechanisms. First, the CREB-dependent transient change in neuronal excitability performs a memory-allocation function ensuring that memory is stored in ways that facilitate effective linking of events with temporal proximity (hours). Second, these changes may promote cell-assembly formation during the memory-consolidation phase. It has been unclear whether such global excitability changes and local synaptic mechanisms are complementary. Here we argue that the two mechanisms can work together to promote useful memory function.
These findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models.
Lead (Pb) is known to disrupt the pro-oxidant/anti-oxidant balance of tissues which leads to biochemical and physiological dysfunction. The present study investigated the effects of exposure on the redox status of the lenses of Fisher 344 rats and examined whether antioxidant or chelator administration reversed these changes. Animals were given 5 weeks of 2000 ppm Pb exposure followed by 1 week of either antioxidant, chelator or distilled water administration. Glutathione (GSH) and cysteine (CYS) levels decreased in the Pb-exposed group. N-acetylcysteine or 2,3-dimercaptopsuccinic acid (Succimer) supplementation following Pb intoxication resulted in increases in the GSH and CYS levels. Protein bound glutathione (PSSG) and cysteine (PSSC) increased following Pb exposure. In the Succimer-treated animals, the PSSG decreased significantly. The glutathione disulfide (GSSG) levels remained unchanged. Malondialdehyde (MDA) levels, a major lipid peroxidation byproduct, increased following Pb exposure and decreased following Succimer treatment. Our results suggest that antioxidant supplementation, as well as chelation, following Pb exposure may enhance the reductive status of lenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.