Recent data suggest that the gut microbiota plays a significant role in fat accumulation. However, it is not clear whether gut microbiota is involved in the pathophysiology of type 2 diabetes. To assess this issue, we modulated gut microbiota via antibiotics administration in two different mouse models with insulin resistance. Results from dose-determination studies showed that a combination of norfloxacin and ampicillin, at a dose of 1 g/L, maximally suppressed the numbers of cecal aerobic and anaerobic bacteria in ob/ob mice. After a 2-wk intervention with the antibiotic combination, both ob/ob and diet-induced obese and insulin-resistant mice showed a significant improvement in fasting glycemia and oral glucose tolerance. The improved glycemic control was independent of food intake or adiposity because pair-fed ob/ob mice were as glucose intolerant as the control ob/ob mice. Reduced liver triglycerides and increased liver glycogen correlated with improved glucose tolerance in the treated mice. Concomitant reduction of plasma lipopolysaccharides and increase of adiponectin further supported the antidiabetic effects of the antibiotic treatment in ob/ob mice. In summary, modulation of gut microbiota ameliorated glucose tolerance of mice by altering the expression of hepatic and intestinal genes involved in inflammation and metabolism, and by changing the hormonal, inflammatory, and metabolic status of the host.
The increased availability of saturated lipids has been correlated with development of insulin resistance, although the basis for this impairment is not defined. This work examined the interaction of saturated and unsaturated fatty acids (FA) with insulin stimulation of glucose uptake and its relation to the FA incorporation into different lipid pools in cultured human muscle. It is shown that basal or insulin-stimulated 2-deoxyglucose uptake was unaltered in cells preincubated with oleate, whereas basal glucose uptake was increased and insulin response was impaired in palmitate- and stearate-loaded cells. Analysis of the incorporation of FA into different lipid pools showed that palmitate, stearate, and oleate were similarly incorporated into phospholipids (PL) and did not modify the FA profile. In contrast, differences were observed in the total incorporation of FA into triacylglycerides (TAG): unsaturated FA were readily diverted toward TAG, whereas saturated FA could accumulate as diacylglycerol (DAG). Treatment with palmitate increased the activity of membrane-associated protein kinase C, whereas oleate had no effect. Mixture of palmitate with oleate diverted the saturated FA toward TAG and abolished its effect on glucose uptake. In conclusion, our data indicate that saturated FA-promoted changes in basal glucose uptake and insulin response were not correlated to a modification of the FA profile in PL or TAG accumulation. In contrast, these changes were related to saturated FA being accumulated as DAG and activating protein kinase C. Therefore, our results suggest that accumulation of DAG may be a molecular link between an increased availability of saturated FA and the induction of insulin resistance.
Epidemiological evidence has been supporting a relationship between dietary aflatoxin B1 (AFB1) exposure, development of human primary hepatocellular carcinoma (HCC) and mutations in the p53 tumor suppressor gene. However, the correlation between the observed p53 mutations, the AFB1 DNA adducts and their activation pathways has not been elucidated. Development of relevant cellular in vitro models, taking into account species and tissue specificity, could significantly contribute to the knowledge of cytotoxicity and genotoxicity mechanisms of chemical procarcinogens, such as AFB1, in humans. For this purpose a non-tumorigenic SV40-immortalized human liver epithelial cell line (THLE cells) which retained most of the phase II enzymes, but had markedly reduced phase I activities was used for stable expression of the human CYP1A2, CYP2A6, CYP2B6 and CYP3A4 cDNA. The four genetically engineered cell lines (T5-1A2, T5-2A6, T5-2B6 and T5-3A4) produced high levels of the specific CYP450 proteins and showed comparable or higher catalytic activities related to the CYP450 expression when compared to human hepatocytes. The T5-1A2, T5-2A6, T5-2B6 and T5-3A4 cell lines exhibited a very high sensitivity to the cytotoxic effects of AFB1 and were approximately 125-, 2-, 2- and 15-fold, respectively, more sensitive than the control T5-neo cells, transfected with an expressing vector which does not contain CYP450 cDNA. In the CYP450-expressing cells, nanomolar doses of AFB1-induced DNA adduct formation including AFB1-N7-guanine, -pyrimidyl and -diol adducts. In addition, the T5-1A2 cells showed AFM1-DNA adducts. At similar levels of total DNA adducts, both the T5-1A2 and T5-3A4 cells showed, at codon 249 of the p53 gene, AGG to AGT transversions at a relative frequency of 15x10(-6). In contrast, only the T5-3A4 cells showed CCC to ACC transversion at codon 250 at a high frequency, whereas the second most frequent mutations found in the T5-1A2 cells were C to T transitions at the first and second position of the codon 250. No significant AFB1-induced p53 mutations could be detected in the T5-2A6 cells. Therefore, the differential expression of specific CYP450 genes in human hepatocytes can modulate the cytotoxicity, DNA adduct levels and frequency of p53 mutations produced by AFB1.
Objective: To test whether consumption of a beverage containing active ingredients will increase 24-hour energy metabolism in healthy, young, lean individuals. Research Method and Procedures: Thirty-one male and female subjects consumed 3 ϫ 250-mL servings of a beverage containing green tea catechins, caffeine, and calcium for 3 days in a single-center, double-blind, placebo-controlled, cross-over design study. On the 3rd day, 23-hour energy metabolism, extrapolated to 24-hour, was measured in a calorimeter chamber. Blood pressure and heart rate were measured, and total day and night urines were analyzed for urea and catecholamine excretion. Results: Twenty-four-hour energy expenditure (EE) and 24-hour fat oxidation were lower in women than in men (p Ͻ 0.0001 and p Ͻ 0.015, respectively). Although there were no treatment or treatment/gender effects on substrate oxidation, treatment increased 24-hour EE by 106 Ϯ 31 kcal/24 hours (p ϭ 0.002), equivalent to 4.7 Ϯ 1.6 kcal/h (day; p ϭ 0.005) and 3.3 Ϯ 1.5 kcal/h (night; p ϭ 0.04). No significant differences were observed in hemodynamic parameters. Discussion: The present study provides evidence that consumption of a beverage containing green tea catechins, caffeine, and calcium increases 24-hour EE by 4.6%, but the contribution of the individual ingredients cannot be distinguished. Although this increase is modest, the results are discussed in relation to proposed public health goals, indicating that such modifications are sufficient to prevent weight gain. When consumed regularly as part of a healthy diet and exercise regime, such a beverage may provide benefits for weight control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.