SummaryA survey of Haemophilus in¯uenzae strains indicated that around one-third of capsular strains and over two-thirds of non-typeable strains included sialic acid in their lipopolysaccharides (LPS). Mutation of the CMP-Neu5Ac synthetase gene (siaB ) resulted in a sialylation-de®cient phenotype. Isogenic pairs, wild type and siaB mutant of two non-typeable strains were used to demonstrate that sialic acid in¯uences resistance to the killing effect of normal human serum but has little effect on attachment to, or invasion of, cultured human epithelial cells or neutrophils. We determine for the ®rst time the site of attachment of sialic acid in the LPS of a non-typeable strain and report that a small proportion of glycoforms include two sialic acid residues in a disaccharide unit.
Neisseria meningitidis pili are filamentous protein structures that are essential adhesins in capsulate bacteria. Pili of adhesion variants of meningococcal strain C311 contain glycosyl residues on pilin (PilE), their major structural subunit. Despite the presence of three potential N-linked glycosylation sites, none appears to be occupied in these pilins. Instead, a novel O-linked trisaccharide substituent, not previously found as a constituent of glycoproteins, is present within a peptide spanning amino acid residues 45 to 73 of the PilE molecule. This structure contains a terminal 1-4-linked digalactose moiety covalently linked to a 2,4-diacetamido-2,4,6-trideoxyhexose sugar which is directly attached to pilin. Pilins derived from galactose epimerase (galE) mutants lack the digalactosyl moiety, but retain the diacetamidotrideoxyhexose substitution. Both parental (#3) pilins and those derived from a hyper-adherent variant (#16) contained identical sugar substitutions in this region of pilin, and galE mutants of #3 were similar to the parental phenotype in their adherence to host cells. These studies have confirmed our previous observations that meningococcal pili are glycosylated and provided the first structural evidence for the presence of covalently linked carbohydrate on pili. In addition, they have revealed a completely novel protein/saccharide linkage.
Opa protein-expressing pathogenic neisseriae interact with CD66a-transfected COS (African green monkey kidney) and CHO (Chinese hamster ovary) cells. CD66a (BGP) is a member of carcinoembryonic antigen (CEA, CD66) family. The interactions occur at the N-terminal domain of CD66a, a region that is highly conserved between members of the CEA subgroup of the CD66 family. In this study, we have investigated the roles of CD66 expressed on human epithelial cells and polymorphonuclear phagocytes (PMNs) in adhesion mediated via Opa proteins. Using human colonic (HT29) and lung (A549) epithelial cell lines known to express CD66 molecules, we show that these receptors are used by meningococci. A monoclonal antibody, YTH71.3, against the N-terminal domain of CD66, but not 3B10 directed against domains, A1/ B1, inhibited meningococcal adhesion to host cells. When acapsulate bacteria expressing Opa proteins were used, large numbers of bacteria adhered to HT29 and A549 cells. In addition, both CD66a-transfected CHO cells and human epithelial cells were invaded by Opa-expressing meningococci, suggesting that epithelial cell invasion may occur via Opa-CD66 interactions. In previous studies we have shown that serogroup A strain C751 expresses three Opa proteins, all of which mediate non-opsonic interactions with neutrophils. We have examined the mechanisms of these interactions using antibodies and soluble chimeric receptors. The results indicate that the nature of their interactions with purified CD66a molecules and with CD66 on neutrophils is alike and that these interactions occur at the N-terminal domain of CD66. Thus, the Opa family of neisserial ligands may interact with several members of the CD66 family via their largely conserved N-terminal domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.